biết a/2 =b/5 =c/7 và a .b.c =560 tính a+b-c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
a: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{24}{9}=\dfrac{8}{3}\)
=>x=16/3; y=8; z=32/3
A=3x+2y-6z
=3*16/3+2*8-6*32/3
=16+16-64
=-32
b: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{z}{7}=\dfrac{x-y+z}{5-6+7}=\dfrac{6\sqrt{2}}{6}=\sqrt{2}\)
=>x=5căn 2; y=6căn 2; y=7căn 2
B=xy-yz
=y(x-z)
=6căn 2(5căn 2-7căn 2)
=-6căn 2*2căn 2
=-24
Bài 2:
\(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)
\(\Rightarrow\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}=\dfrac{a+b+a-b}{c+a+c-a}=\dfrac{a}{c}\) (T/c dãy tỷ số = nhau)
\(\Rightarrow\dfrac{a+b}{c+a}=\dfrac{a}{c}\Rightarrow c\left(a+b\right)=a\left(c+a\right)\)
\(\Rightarrow ac+bc=ac+a^2\Rightarrow a^2=bc\)
a) gt => a + b+ c = 4. kết hợp với a+b =5
=> c = -1
a + b + c = 4 kết hợp với b+c = 9 => a = -4
=> b= 10
b) a.b = -6 (1)
b.c= -15 (2)
c.a = 10 (3)
Từ (1) => a = -6/b. Thay a vào (3) được: c = -5/ 3b
Thay c vào (2) được b2 = 9 => b= 3 hoặc b = -3
+) với b = 3 => c = -5 ; a = -2
+) với b= -3 => c = 5 ; a= 2
=>> KL: ...
Đặt \(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=k\left(k\ne0\right)\)
\(\Rightarrow\hept{\begin{cases}a=2k\\b=5k\\c=7k\end{cases}}\)
Thay vào ta có :
\(2k\cdot5k\cdot7k=560\)
\(k^3\cdot70=560\)
\(k^3=8\)
\(\Rightarrow k=2\)
\(\Rightarrow\hept{\begin{cases}a=4\\b=10\\b=14\end{cases}}\)
\(\Rightarrow a+b+c=28\)
Vậy \(a+b+c=28\)