K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2021

\(x^2+6x+9-6x-18+9\)  

\(=x^2\)

22 tháng 4 2017

\(1.\)\(M=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{42}\)

\(M=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{6.7}\)

\(M=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{6}-\frac{1}{7}\)

\(M=1-\frac{1}{7}=\frac{6}{7}\)

Mình làm câu 1 thoi nha!

22 tháng 4 2017

1.

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)

=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\)

=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{6}-\frac{1}{7}\)

=\(1-\frac{1}{7}\)

=\(\frac{6}{7}\)

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Áp dụng công thức nhị thức Newton, ta có:

\(\begin{array}{l}{\left( {1 + x} \right)^4} = {1^4} + C_4^1{.1^3}x + C_4^2{.1^2}{x^2} + C_4^3.1{x^3} + C_4^4{x^4}\\ = 1 + 4x + 6{x^2} + 4{x^3} + {x^4}\end{array}\)

\(\begin{array}{l}{\left( {1 - x} \right)^4} = {1^4} + C_4^1{.1^3}\left( { - x} \right) + C_4^2{.1^2}{\left( { - x} \right)^2} + C_4^3.1{\left( { - x} \right)^3} + C_4^4{\left( { - x} \right)^4}\\ = 1 - 4x + 6{x^2} - 4{x^3} + {x^4}\end{array}\)

Suy ra

\(\begin{array}{l}{\left( {1 + x} \right)^4} + {\left( {1 - x} \right)^4} = 1 + 4x + 6{x^2} + 4{x^3} + {x^4} + 1 - 4x + 6{x^2} - 4{x^3} + {x^4}\\ = 2 + 12{x^2} + 2{x^4}\end{array}\)

Vậy \({\left( {1 + x} \right)^4} + {\left( {1 - x} \right)^4} = 2 + 12{x^2} + 2{x^4}\)

Ta có: \(1,{05^4} + 0,{95^4} = {\left( {1 + 0,05} \right)^4} + {\left( {1 - 0,05} \right)^4}\)

Áp dụng biểu thức vừa chứng minh \({\left( {1 + x} \right)^4} + {\left( {1 - x} \right)^4} = 2 + 12{x^2} + 2{x^4}\)

ta có: \(1,{05^4} + 0,{95^4} = {\left( {1 + 0,05} \right)^4} + {\left( {1 - 0,05} \right)^4} = 2 + 12.0,0{5^2} + 2.0,0{5^4}\\ = 2,0300125\)

14 tháng 12 2015

A = (9 - 3)(92 + 3.9 + 9) - 9.(92 - 3)

= 6.117 - 702

= 0

14 tháng 12 2015

Rút gọn thế được chưa 

\(x^2+x-6\\ =x^2-2x+3x-6\\ =x\left(x-2\right)+3\left(x-2\right)\\ =\left(x+3\right)\left(x-2\right)\)

Đáp án: B

d) Ta có: \(D=\left(\dfrac{5\sqrt{x}-6}{x-9}-\dfrac{2}{\sqrt{x}+3}\right):\left(1+\dfrac{6}{x-9}\right)\)

\(=\dfrac{5\sqrt{x}-6-2\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{x-9+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{5\sqrt{x}-6-2\sqrt{x}+6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{x-3}\)

\(=\dfrac{3\sqrt{x}}{x-3}\)

f) Ta có: \(\left(\dfrac{3}{\sqrt{1+x}}+\sqrt{1-x}\right):\left(\dfrac{3}{\sqrt{1-x^2}}+1\right)\)

\(=\dfrac{3+\sqrt{1-x^2}}{\sqrt{1+x}}:\dfrac{3+\sqrt{1-x^2}}{\sqrt{1-x^2}}\)

\(=\dfrac{\sqrt{1-x^2}}{\sqrt{1+x}}=\sqrt{1-x}\)

23 tháng 5 2021

Mình ghi nhầm. \(x=\frac{\sqrt{4+2\sqrt{3}}.\left(\sqrt{3}-1\right)}{\sqrt{6+2\sqrt{5}}-\sqrt{5}}\)nhé

1, cho \(M=\dfrac{1}{2-\sqrt{3}}\) và \(N=\sqrt{6}.\sqrt{2}\) kết quả của phét tính 2M - N bằnga, \(4+4\sqrt{3}\)            b, \(2+\sqrt{3}\)                c,4                   d, \(2\sqrt{3}\)2, với x>6 thì biểu thức \(-x+\sqrt{\left(6-x\right)^2}\) rút gọn đc kết quả bằng a, -2x+6                 b,2x-6                     c -6                  d, 63, cho hàm số y=f(x)=\(\dfrac{1}{3}\) x -1 khẳng định nào sao đây đúnga, f(2)<f(3)            b, f(-3)< f(-4) ...
Đọc tiếp

1, cho \(M=\dfrac{1}{2-\sqrt{3}}\) và \(N=\sqrt{6}.\sqrt{2}\) kết quả của phét tính 2M - N bằng

a, \(4+4\sqrt{3}\)            b, \(2+\sqrt{3}\)                c,4                   d, \(2\sqrt{3}\)

2, với x>6 thì biểu thức \(-x+\sqrt{\left(6-x\right)^2}\) rút gọn đc kết quả bằng 
a, -2x+6                 b,2x-6                     c -6                  d, 6

3, cho hàm số y=f(x)=\(\dfrac{1}{3}\) x -1 khẳng định nào sao đây đúng
a, f(2)<f(3)            b, f(-3)< f(-4)            c, f (-4)>f(2)      d, f(2)<(0)
4,cho tam giác ABC đều cạch a nội tiếp đg tròn (O;R) giá trị của R bằng 
a, \(R=\dfrac{a\sqrt{3}}{3}\)        b, R=a                  c, \(R=a\sqrt{3}\)      d, \(R=\dfrac{a\sqrt{3}}{2}\)

3
4 tháng 2 2022

1. \(2M-N=\dfrac{2}{2-\sqrt{3}}-\sqrt{6}.\sqrt{2}=\dfrac{2-2\sqrt{3}\left(2-\sqrt{3}\right)}{2-\sqrt{3}}=\)\(\dfrac{2-4\sqrt{3}+6}{2-\sqrt{3}}=\dfrac{8-4\sqrt{3}}{2-\sqrt{3}}=4\)

Đáp án C

2. Ta có: A= \(-x+\sqrt{\left(6-x\right)^2}=-x+\left|6-x\right|\)

Mà x>6 \(\Rightarrow6-x< 0\)A=-x-6+x=-6

Đáp án C

3. Vẽ đồ thị hàm f(x) ta có: 

Ta thấy f(2)<f(3), chọn Đáp án A

4. 

Khi đó, bán kính của đường tròn bằng \(\dfrac{2}{3}\)đường cao của tam giác đều ABC

Ta có: \(R=\dfrac{2}{3}.\dfrac{a\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{3}\)

Đáp án A

Câu 1: C

Câu 2: C

Câu 3: A

Câu 4: A

 

9 tháng 2 2020

Vì | x-1| ; |x+2|; |x-3| ; |x+4| ; |x-5|; |x+6| ; |x-7| ; |x+8| ; |x-9| luôn luôn < hoặc = 0

vì vậy min của T =0

9 tháng 2 2020

\(T=|x-1|+|x+2|+|x-3|+|x+4|+|x-5|+|x+6|+|x-7|+|x+8|+|x-9|\)

\(\Rightarrow T=|x-1|+|x+2|+|3-x|+|x+4|+|5-x|+|x+6|+|7-x|+|x+8|+|9-x|\)

\(\Rightarrow T\ge|x-1+x+2+3-x+x+4+5-x+x+6+7-x+x+8+9-x|\)

\(\Rightarrow T\ge|43|\)

\(\Rightarrow T\ge43\)

Vậy \(Min_T=43\)