\(\left(x+3\right)^2-6\left(x+3\right)+9\)
Hãy tính kết quả của biểu thức
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.\)\(M=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{42}\)
\(M=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{6.7}\)
\(M=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{6}-\frac{1}{7}\)
\(M=1-\frac{1}{7}=\frac{6}{7}\)
Mình làm câu 1 thoi nha!
1.
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)
=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\)
=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{6}-\frac{1}{7}\)
=\(1-\frac{1}{7}\)
=\(\frac{6}{7}\)
a) Áp dụng công thức nhị thức Newton, ta có:
\(\begin{array}{l}{\left( {1 + x} \right)^4} = {1^4} + C_4^1{.1^3}x + C_4^2{.1^2}{x^2} + C_4^3.1{x^3} + C_4^4{x^4}\\ = 1 + 4x + 6{x^2} + 4{x^3} + {x^4}\end{array}\)
\(\begin{array}{l}{\left( {1 - x} \right)^4} = {1^4} + C_4^1{.1^3}\left( { - x} \right) + C_4^2{.1^2}{\left( { - x} \right)^2} + C_4^3.1{\left( { - x} \right)^3} + C_4^4{\left( { - x} \right)^4}\\ = 1 - 4x + 6{x^2} - 4{x^3} + {x^4}\end{array}\)
Suy ra
\(\begin{array}{l}{\left( {1 + x} \right)^4} + {\left( {1 - x} \right)^4} = 1 + 4x + 6{x^2} + 4{x^3} + {x^4} + 1 - 4x + 6{x^2} - 4{x^3} + {x^4}\\ = 2 + 12{x^2} + 2{x^4}\end{array}\)
Vậy \({\left( {1 + x} \right)^4} + {\left( {1 - x} \right)^4} = 2 + 12{x^2} + 2{x^4}\)
Ta có: \(1,{05^4} + 0,{95^4} = {\left( {1 + 0,05} \right)^4} + {\left( {1 - 0,05} \right)^4}\)
Áp dụng biểu thức vừa chứng minh \({\left( {1 + x} \right)^4} + {\left( {1 - x} \right)^4} = 2 + 12{x^2} + 2{x^4}\)
ta có: \(1,{05^4} + 0,{95^4} = {\left( {1 + 0,05} \right)^4} + {\left( {1 - 0,05} \right)^4} = 2 + 12.0,0{5^2} + 2.0,0{5^4}\\ = 2,0300125\)
\(x^2+x-6\\ =x^2-2x+3x-6\\ =x\left(x-2\right)+3\left(x-2\right)\\ =\left(x+3\right)\left(x-2\right)\)
Đáp án: B
d) Ta có: \(D=\left(\dfrac{5\sqrt{x}-6}{x-9}-\dfrac{2}{\sqrt{x}+3}\right):\left(1+\dfrac{6}{x-9}\right)\)
\(=\dfrac{5\sqrt{x}-6-2\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{x-9+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{5\sqrt{x}-6-2\sqrt{x}+6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{x-3}\)
\(=\dfrac{3\sqrt{x}}{x-3}\)
f) Ta có: \(\left(\dfrac{3}{\sqrt{1+x}}+\sqrt{1-x}\right):\left(\dfrac{3}{\sqrt{1-x^2}}+1\right)\)
\(=\dfrac{3+\sqrt{1-x^2}}{\sqrt{1+x}}:\dfrac{3+\sqrt{1-x^2}}{\sqrt{1-x^2}}\)
\(=\dfrac{\sqrt{1-x^2}}{\sqrt{1+x}}=\sqrt{1-x}\)
Mình ghi nhầm. \(x=\frac{\sqrt{4+2\sqrt{3}}.\left(\sqrt{3}-1\right)}{\sqrt{6+2\sqrt{5}}-\sqrt{5}}\)nhé
1. \(2M-N=\dfrac{2}{2-\sqrt{3}}-\sqrt{6}.\sqrt{2}=\dfrac{2-2\sqrt{3}\left(2-\sqrt{3}\right)}{2-\sqrt{3}}=\)\(\dfrac{2-4\sqrt{3}+6}{2-\sqrt{3}}=\dfrac{8-4\sqrt{3}}{2-\sqrt{3}}=4\)
Đáp án C
2. Ta có: A= \(-x+\sqrt{\left(6-x\right)^2}=-x+\left|6-x\right|\)
Mà x>6 \(\Rightarrow6-x< 0\)A=-x-6+x=-6
Đáp án C
3. Vẽ đồ thị hàm f(x) ta có:
Ta thấy f(2)<f(3), chọn Đáp án A
4.
Khi đó, bán kính của đường tròn bằng \(\dfrac{2}{3}\)đường cao của tam giác đều ABC
Ta có: \(R=\dfrac{2}{3}.\dfrac{a\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{3}\)
Đáp án A
Vì | x-1| ; |x+2|; |x-3| ; |x+4| ; |x-5|; |x+6| ; |x-7| ; |x+8| ; |x-9| luôn luôn < hoặc = 0
vì vậy min của T =0
\(T=|x-1|+|x+2|+|x-3|+|x+4|+|x-5|+|x+6|+|x-7|+|x+8|+|x-9|\)
\(\Rightarrow T=|x-1|+|x+2|+|3-x|+|x+4|+|5-x|+|x+6|+|7-x|+|x+8|+|9-x|\)
\(\Rightarrow T\ge|x-1+x+2+3-x+x+4+5-x+x+6+7-x+x+8+9-x|\)
\(\Rightarrow T\ge|43|\)
\(\Rightarrow T\ge43\)
Vậy \(Min_T=43\)
(x+3)[(x+3)-6]+9
=(x+3)(x-3)+9
=x^2-9+9
=x22. anh ơi bài này dễ lắm
đáp án : x^2
giải thích các bước giải
( x + 3 )^2 - 6( x + 3 ) + 9
= ( x + 3 ) ( x + 3 ) - 6 ( x + 3 ) + 9
= x ( x + 3 ) + 3 ( x + 3 ) - 6 ( x + 3 )
= x^2 + 3x + 3x + 9 - 6 ( x +3 ) + 9
= x^2 + { [ ( 3x + 3x + 9 ) - [ 6 ( x + 3 ) + 9 ] }
= x^2 + { ( 6x + 9 ) - [ 6 ( x + 3 ) +9 ] }
= x^2 - ( 6 . 3 ) = x^2 - 18