K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2019

Bất phương trình \(x^2+2x+m-5\ge0\) có tập nghiệm là \((-\infty;3]\) có nghiệm khi \(m\in[2;+\infty)\)

6 tháng 4 2020

hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

7 tháng 4 2020

,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

2 tháng 4 2017

Đáp án: B

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 4)

Ta có bảng xét dấu vế trái của (*):

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 4)

Từ đó suy ra tập nghiệm của (*) là:

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 4)

2: \(\text{Δ}=1^2-4\cdot\left(-1\right)\cdot\left(-m\right)=1-4m\)

Để bất phương trình vô nghiệm thì \(\left\{{}\begin{matrix}1-4m< 0\\-1< 0\end{matrix}\right.\Leftrightarrow m>\dfrac{1}{4}\)

28 tháng 6 2018

Chọn D

4 tháng 4 2017

Chọn D.

Điều kiện: x ≠ -2;1

Khi đó, ta có:

Đề kiểm tra 15 phút Đại số 10 Chương 4 có đáp án (Đề 1)

Đề kiểm tra 15 phút Đại số 10 Chương 4 có đáp án (Đề 1)

Đề kiểm tra 15 phút Đại số 10 Chương 4 có đáp án (Đề 1)

Đề kiểm tra 15 phút Đại số 10 Chương 4 có đáp án (Đề 1)

Đề kiểm tra 15 phút Đại số 10 Chương 4 có đáp án (Đề 1)

Lập bảng xét dấu.

Tập nghiệm của bất phương trình Đề kiểm tra 15 phút Đại số 10 Chương 4 có đáp án (Đề 1) là Đề kiểm tra 15 phút Đại số 10 Chương 4 có đáp án (Đề 1) .

19 tháng 7 2017

Chọn D

6 tháng 5

 💕

12 tháng 5 2017

bpt (1) : x> \(\frac{2m}{3m-1}\); bpt (2) : x > \(\frac{m}{2}\)

de 2 bpt co cung tap nghiem thi \(\frac{2m}{3m-1}\)= \(\frac{m}{2}\)(3) voi dk m # \(\frac{1}{3}\)

giai pt (3) tim duoc m= 0 , m = \(\frac{5}{3}\)thoa dieu kien m # \(\frac{1}{3}\)