Giải phương trình
\(\frac{x-3}{x-2}+\frac{x-2}{x-4}=3\frac{1}{5}\)
Đang cần gấp mong mn giúp nhanh ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b,x+2\sqrt{7-x}=2\sqrt{x-1}+\sqrt{-x^2+8x-7}+1\)
Đặt: \(\hept{\begin{cases}\sqrt{x-1}=a\\\sqrt{7-x}=b\end{cases}}\)Ta được pt mới: \(a^2+2b=2a+ab\Leftrightarrow\left(a-2\right)\left(a-b\right)=0\)
cái thứ 1 nhân liên hợp đi
sau đó nhân chéo lên vs vế phải
rồi rút gọn
bình lên
giải pt là đc
\(4\left(x+1\right)^2=\sqrt{2\left(x^4+x^2+1\right)}\)
\(\Leftrightarrow16\left(x+1\right)^4=2\left(x^4+x^2+1\right)\)
\(\Leftrightarrow\left(x^2+3x+1\right)\left(7x^2+11x+7\right)=0\)
\(\sqrt{\frac{x+56}{16}+\sqrt{x-8}}=\frac{x}{8}\)
\(\Leftrightarrow2\sqrt{x+56+16\sqrt{x-8}}=x\)
\(\Leftrightarrow2\sqrt{\left(\sqrt{x-8}+8\right)^2}=x\)
\(\Leftrightarrow2\sqrt{x-8}+16=x\)
\(\Leftrightarrow x=24\)
ĐK: x >0
Liên hợp:
pt <=> \(\sqrt{\frac{x^2+3}{x}}-2=\frac{x^2+7}{2\left(x+1\right)}-2\)
<=> \(\frac{\frac{x^2+3}{x}-4}{\sqrt{\frac{x^2+3}{x}}+2}=\frac{x^2+7-4\left(x+1\right)}{2\left(x+1\right)}\)
<=> \(\frac{x^2-4x+3}{x\left(\sqrt{\frac{x^2+3}{x}}+2\right)}=\frac{x^2-4x+3}{2\left(x+1\right)}\)
<=> \(\orbr{\begin{cases}x^2-4x+3=0\left(1\right)\\x\left(\sqrt{\frac{x^2+3}{x}}+2\right)=2\left(x+1\right)\left(2\right)\end{cases}}\)
(1) <=> x = 1 hoặc x = 3 (tm)
(2) <=> \(x\sqrt{\frac{x^2+3}{x}}=2\)
<=> \(x\left(x^2+3\right)=4\)
<=> \(x^3+3x-4=0\)
,<=> (x-1)(x^2 +x +4) = 0
<=> x = 1 (tm)
Vậy x = 1 hoặc x = 3.
cách khác nhung chỉ dài thêm thôi
\(DK:x>0\)
PT\(\Leftrightarrow2\left(x+1\right)\sqrt{x^2+3}=\sqrt{x}\left(x^2+7\right)\)
Dat \(\sqrt{x^2+3}=t>0\)
PT tro thanh
\(\sqrt{x}t^2-2\left(x+1\right)t+4\sqrt{x}=0\)
Ta co:
\(\Delta^`_t=\left(x-2\right)^2\ge0\)
\(\Rightarrow\hept{\begin{cases}t_1=\frac{x+1+\left|x-2\right|}{\sqrt{x}}\\t_2=\frac{x+1-\left|x-2\right|}{\sqrt{x}}\\t_3=\frac{x+1}{\sqrt{x}}\end{cases}}\)
Sau do the vo giai nhu binh thuong :D
\(\left(\frac{5}{x+3}-2\right).4=7-\left(\frac{9}{x+3}+\frac{1}{2}\right).2\)
\(\Leftrightarrow\frac{20}{x+3}-8=7-\frac{18}{x+3}+1\)
\(\Leftrightarrow\frac{20}{x+3}-8=8-\frac{18}{x+3}\)
\(\Leftrightarrow\frac{20}{x+3}+\frac{18}{x+3}=8+8\)
\(\Leftrightarrow\frac{38}{x+3}=16\)
\(\Leftrightarrow x+3=2,375\)
\(\Leftrightarrow x=-0,625\)
\(\left(\frac{5}{x+3}-2\right).4=7-\left(\frac{9}{x+3}+\frac{1}{2}\right).2\)
\(\Leftrightarrow\frac{20}{x+3}-8=7-\left(\frac{18}{x+3}+1\right)\)
\(\Leftrightarrow\frac{20}{x+3}-8=7-\frac{18}{x+3}-1\)
\(\Leftrightarrow\frac{20}{x+3}+\frac{18}{x+3}=7-1+8\)
\(\Leftrightarrow\frac{38}{x+3}=14\)
\(\Leftrightarrow\left(x+3\right)14=38\)
\(\Leftrightarrow14x+42=38\)
\(\Leftrightarrow14x=-4\Leftrightarrow x=-\frac{4}{14}=-\frac{2}{7}\)
Vậy \(x=-\frac{2}{7}\)
\(a)\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}=\frac{-3}{4}\left(x\ne-3;x\ne2\right)\)
\(\Leftrightarrow\frac{x+2}{x+3}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{1}{x-2}=\frac{-3}{4}\)
\(\Leftrightarrow\frac{x^2-4}{\left(x-2\right)\left(x+3\right)}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{x+3}{\left(x-2\right)\left(x+3\right)}=\frac{-3}{4}\)
\(\Leftrightarrow\frac{x^2-4-5-x-3}{\left(x-2\right)\left(x+3\right)}=\frac{-3}{4}\)
\(\Leftrightarrow\frac{x^2-x-12}{\left(x-2\right)\left(x+3\right)}=\frac{-3}{4}\)
\(\Leftrightarrow\frac{\left(x-4\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}=\frac{-3}{4}\)
\(\Leftrightarrow\frac{x-4}{x-2}=\frac{-3}{4}\)
<=> 4x-16=-3x+6
<=> 4x-16+3x-6=0
<=> 7x-22=0
<=> 7x=22
<=> \(x=\frac{22}{7}\)(TMĐK)
\(\frac{x+\frac{2\left(3-x\right)}{5}}{14}-\frac{5x-4\left(x-1\right)}{24}=\frac{7x+2+\frac{9-3x}{5}}{12}+\frac{2}{3}\)
\(\Leftrightarrow\frac{\frac{5x+6-2x}{5}}{14}-\frac{x+4}{24}=\frac{\frac{35x+10+9-3x}{5}}{12}+\frac{2}{3}\)
\(\Leftrightarrow\frac{\frac{3x+6}{5}}{14}-\frac{x+4}{24}=\frac{\frac{32x+19}{5}}{12}+\frac{2}{3}\)
\(\Leftrightarrow\left(\frac{3x+6}{5}\cdot\frac{1}{14}\right)-\frac{x+4}{24}=\left(\frac{32x+19}{5}\cdot\frac{1}{12}\right)+\frac{2}{3}\)(CHIA CHO 14 LÀ NHÂN NGHỊCH ĐẢO VỚI 1/14,) (CHIA CHO 12 LÀ NHÂN NGHỊCH ĐẢO VỚI 1/12)\(\Leftrightarrow\frac{3x+6}{70}-\frac{x+4}{24}-\frac{32x+19}{60}-\frac{2}{3}=0\)\(\Leftrightarrow\frac{12\left(3x+6\right)-35\left(x+4\right)-14\left(32x+19\right)-2\cdot280}{840}=0\)
\(\Leftrightarrow12\left(3x+6\right)-35\left(x+4\right)-14\left(32x+19\right)-560=0\)
\(\Leftrightarrow36x+72-35x-140-448x-266-560=0\)
\(\Leftrightarrow-447x-894=0\Leftrightarrow x=\frac{-894}{447}=-2\)(NHẬN)
Vậy tập nghiệm của phương trình là : S = { -2 }
tk cho mk nka ! ! ! th@nks ! ! !
\(\frac{x+2}{x+3}-\frac{x+1}{x-1}=\frac{4}{\left(x-1\right)\left(x+3\right)}\left(x\ne-3;x\ne1\right)\)
\(\Leftrightarrow\frac{x+2}{x+3}-\frac{x+1}{x-1}-\frac{4}{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(x-1\right)}{\left(x+3\right)\left(x-1\right)}-\frac{\left(x+1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\frac{4}{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{x^2+x-2}{\left(x+3\right)\left(x-1\right)}-\frac{x^2+4x+3}{\left(x-1\right)\left(x+3\right)}-\frac{4}{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{x^2+x-2-x^2-4x-3-4}{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{-3x-9}{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{-3\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{-3}{x-1}=0\)
=> PT vô nghiệm
Bài giải
1. Ta có :
\(\frac{x}{5}=\frac{y}{3}\text{ }\Rightarrow\text{ }\frac{x}{10}=\frac{y}{6}\)
\(\frac{y}{2}=\frac{z}{4}\text{ }\Rightarrow\text{ }\frac{y}{6}=\frac{z}{12}\)
\(\Rightarrow\text{ }\frac{x}{10}=\frac{y}{6}=\frac{z}{12}=\frac{x+y+z}{10+6+12}=\frac{28}{28}=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=10\\y=6\\z=12\end{matrix}\right.\)
\(\Rightarrow\text{ }\left(x\text{ ; y}\text{ ; }z\right)=\left(10\text{ ; }6\text{ ; }12\right)\)
2. Đề sai nha bạn !
Vì \(\left\{{}\begin{matrix}2x^2\ge0\text{ với mọi }x\\y^2\ge0\text{ với mọi }y\\2z^2\ge0\text{ với mọi }z\end{matrix}\right.\text{ nên }2x^2+y^2+2z^2\ge0>-124\)
\(\Rightarrow\text{ Trái với đề bài !}\)
Không sai đâu, cô ghi như thế mà, đó là câu *, mình không ghi sai đâu.... mà cũng cảm ơn bạn đã trở lời nhé, chiều nay mình phải nộp mà có kết quả luôn, thanks!
\(ĐKXĐ:x\ne2;4\)
\(\frac{x-3}{x-2}+\frac{x-2}{x-4}=3\frac{1}{5}\)
\(\Leftrightarrow\left(x-3\right)\left(x-4\right)+\left(x-2\right)^2=\frac{16}{5}\left(x-2\right)\left(x-4\right)\)
\(\Leftrightarrow x^2-7x+12+x^2-4x+4=\frac{16}{5}\left(x^2-6x+8\right)\)
\(\Leftrightarrow2x^2-11x+16=\frac{16}{5}x^2-\frac{96}{5}x+\frac{128}{5}\)
\(\Leftrightarrow\frac{6}{5}x^2-\frac{41}{5}x+\frac{48}{5}=0\)
\(\Leftrightarrow6x^2-41x+48=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{16}{3}\\x=\frac{3}{2}\end{cases}}\)
rõ hơn đi bạn