Cho hình vuông ABCD . I thuộc AB sao cho IA=IB. K thuộc BC. Kẻ AE // IK cắt DC ở E. Gọi O là tâm của hình vuông ABCD.Tính góc KOE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C1 :
Hình : tự vẽ
a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C
mà CI vuông góc vs AB => CI là đường cao của tam giác ABC
=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )
=> IA=IB (đpcm)
C1 :
b) Có IA=IB ( cm phần a )
mà IA+IB = AB
IA + IA = 12 (cm)
=> IA = \(\frac{12}{2}=6\left(cm\right)\)
Xét tam giác vuông CIA có : CI2 + IA2 = CA2 ( Đ/l Py-ta -go )
CI2 + 62 = 102
CI2 = 102 - 62 = 64
=> CI = \(\sqrt{64}=8\left(cm\right)\)
Vậy CI ( hay IC ) = 8cm
Ta có: \(\hept{\begin{cases}BE//AD\left(gt\right)\\AB//DE\left(gt\right)\end{cases}\Rightarrow ABED}\)là hình bình hành \(\Rightarrow\widehat{BEF}=\widehat{BAD}\left(t/c\right)\)
Tương tự, AFCB là hình bình hành \(\Rightarrow\widehat{AFE}=\widehat{ABC}\) (góc đối)
Mà \(\widehat{BAD}=\widehat{ABC}\)(tính chất hình thang cân)
\(\Rightarrow\widehat{BEF}=\widehat{AFE}\) Mà AB//FE nên ABEF là hình thang cân.
b, Bạn tự chứng minh được HA=HB,OA=OB,IA=IB
Do đó: H,O,I thẳng hàng (vì cùng nằm trên đường trung trực của đoạn AB) nên \(O\in IH\) (1)
\(\Delta IAB\)cân tại I có IH là đường trung tuyến nên IH đồng thời là đường cao
\(\Rightarrow IH\perp AB\Rightarrow IH\perp CD\) (AB//CD)
Mà \(IK\perp CD\left(gt\right)\Rightarrow I,H,K\)thẳng hàng \(\Rightarrow K\in IH\) (2)
Từ (1) và (2), ta được 4 điểm H,O,I,K thẳng hàng
Chúc bạn học tốt.
Xét \(\Delta ABK\),ta có: BE là phân giác \(\angle ABK,BE\bot AK\)
\(\Rightarrow\Delta ABK\) cân tại B \(\Rightarrow BE\) là trung trực AK
Xét \(\Delta ABD\) và \(\Delta KBD:\) Ta có: \(\left\{{}\begin{matrix}AB=BK\\BDchung\\\angle ABD=\angle KBD\end{matrix}\right.\)
\(\Rightarrow\Delta ABD\sim\Delta KBD\left(c-g-c\right)\Rightarrow\angle BKD=\angle BAD=90\)
Ta có: \(\angle BAD+\angle BKD=90+90=180\Rightarrow BAKD\) nội tiếp
\(\Rightarrow\angle AKD=\angle ABD=\angle KBD=\angle KAH\left(=90-\angle BKA\right)\)
\(\Rightarrow\)\(AI\parallel KD\)
Vì \(I\in BE\Rightarrow IA=IK\Rightarrow\Delta IAK\) cân tại I \(\Rightarrow\angle IKA=\angle IAK\)
BADK nội tiếp \(\Rightarrow\angle KAD=\angle KBD=\angle ABD=\angle AKD\)
\(\Rightarrow\angle IKA=\angle DAK\Rightarrow\)\(IK\parallel AD\Rightarrow AIKD\) là hình bình hành
mà \(IA=IK\Rightarrow IKDA\) là hình thoi