K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ta có: \(\widehat{KCE}=\widehat{ACB}\)(hai góc đối đỉnh)

\(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)

Do đó: \(\widehat{KCE}=\widehat{ABC}\)

Xét ΔDHB vuông tại H và ΔEKC vuông tại K có

BD=CE

\(\widehat{DBH}=\widehat{ECK}\)

Do đó: ΔDHB=ΔEKC

=>BH=CK

 

a: Xét ΔDHB vuông tại H và ΔEKC vuông tại K có
BD=CE

góc DBH=góc ECK

=>ΔDHB=ΔEKC

=>BH=CK

b: Tham khảo:

loading...

a: Xét ΔABD và ΔACE có 

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔABD=ΔACE

Suy ra: AD=AE và \(\widehat{D}=\widehat{E}\)

Xét ΔHBD vuông tại H và ΔKEC vuông tại K có 

BD=CE

\(\widehat{D}=\widehat{E}\)

Do đó: ΔHBD=ΔKCE

Suy ra: BH=CK

b: Xét ΔABH vuông tại H và ΔACK vuông tại K có 

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)

Do dó: ΔABH=ΔACK

a: Xét ΔABD và ΔACE có 

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔABD=ΔACE

Suy ra: AD=AE

Xét ΔBHD vuông tại H và ΔCKE vuông tại K cso

BD=CE

\(\widehat{D}=\widehat{E}\)

Do đó: ΔBHD=ΔCKE

Suy ra: BH=CK

b: Xét ΔABH vuông tại H và ΔACK vuông tại K có 

AB=AC
BH=CK

Do đó: ΔABH=ΔACK

a: Xét ΔABD và ΔACE có 

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE
Do đó; ΔABD=ΔACE

Suy ra: AD=AE
hay ΔADE cân tại A

Xét ΔABH vuông tại H và ΔACK vuông tại K có

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔABH=ΔACK

Suy ra: BH=CK

b: Ta có: ΔABH=ΔACK

nên \(\widehat{ABH}=\widehat{ACK}\)

c: Ta có: \(\widehat{OBC}=\widehat{HBD}\)

\(\widehat{OCB}=\widehat{KCE}\)

mà \(\widehat{HBD}=\widehat{KCE}\)

nên \(\widehat{OBC}=\widehat{OCB}\)

hay ΔOBC cân tại O

5 tháng 2 2022

cảm ơn nha

 

17 tháng 5 2018

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Vì ΔABC cân tại A nên∠(ABC) =∠(ACB) (tính chất tam giác cân)

Ta có: ∠(ABC) +∠(ABD) =180o(hai góc kề bù)

∠(ACB) +∠(ACE) =180o(hai góc kề bù)

Suy ra: ∠(ABD) =∠(ACE)

Xét ΔABD và ΔACE, ta có:

AB = AC (gt)

∠(ABD) =∠(ACE) (chứng minh trên)

BD=CE (gt)

Suy ra: ΔABD= ΔACE (c.g.c)

⇒∠D =∠E (hai góc tương ứng)

Xét hai tam giác vuông ΔBHD và ΔCKE, ta có:

∠(BHD) =∠(CKE) = 90º

BD=CE (gt)

∠D =∠E (chứng minh trên)

Suy ra: ΔBHD= ΔCKE (cạnh huyền – góc nhọn)

Suy ra: BH = CK (hai cạnh tương ứng)