Giải phương trình sau
x4 - 4x3 + 12x -9 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(x^3-7x+6=0\)
\(\Leftrightarrow x^3-3x^2+2x+3x^2-9x+6=0\)
\(\Leftrightarrow x\left(x^2-3x+2\right)+3\left(x^2-3x+2\right)=0\)
\(\Leftrightarrow\left(x^2-3x+2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x^2-x-2x+2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[x\left(x-1\right)-2\left(x-1\right)\right]\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-3\end{matrix}\right.\)
f.
\(x^4-4x^3+12x-9=0\)
\(\Leftrightarrow x^4-4x^3+3x^2-3x^2+12x-9=0\)
\(\Leftrightarrow x^2\left(x^2-4x+3\right)-3\left(x^2-4x+3\right)=0\)
\(\Leftrightarrow\left(x^2-4x+3\right)\left(x^2-3\right)=0\)
\(\Leftrightarrow\left(x^2-x-3x+3\right)\left(x^2-3\right)=0\)
\(\Leftrightarrow\left[x\left(x-1\right)-3\left(x-1\right)\right]\left(x^2-3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left(x^2-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=3\\x=\pm\sqrt{3}\end{matrix}\right.\)
a, \(\Leftrightarrow\left(9x^2-4\right)\left(x+1\right)-\left(3x+2\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(\left(9x^2-4\right)-\left(\left(3x+2\right)\left(x-1\right)\right)\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(9x^2-4-\left(3x^2-x-2\right)\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(9x^2-4-3x^2+x+2\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x^2+x-2\right)=0\)
\(\Leftrightarrow\left(x+1\right)=0;3x^2+x-2=0\)
=> x=-1
với \(3x^2+x-2=0\)
ta sử dụng công thức bậc 2 suy ra : \(x=\dfrac{2}{3};x=-1\)
Vậy ghiệm của pt trên \(S\in\left\{-1;\dfrac{2}{3}\right\}\)
b: \(\Leftrightarrow x^2-2x+1-1+x^2=x+3-x^2-3x\)
\(\Leftrightarrow2x^2-2x=-x^2-2x+3\)
\(\Leftrightarrow3x^2=3\)
hay \(x\in\left\{1;-1\right\}\)
c: \(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x-3\right)-\left(x-1\right)\left(x-2\right)\left(x+2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left[\left(x+1\right)\left(x-3\right)-\left(x-2\right)\left(x+5\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-2x-3-x^2-3x+10\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(-5x+7\right)=0\)
hay \(x\in\left\{1;-2;\dfrac{7}{5}\right\}\)
ta có:
x4-8x2-9=0
x4+9x2-x2-9=0
x4-x2+9x2-9=0
x2(x2-1)+9(x2-10=0
(x2-1)(x2+9)=0
=>x2-1=0=>x=1
=>x2+9=0=>x=-3
Ta có: \(\Delta=b^2-4ac=\left(-12\right)^2-4.4.9=144-144=0\)
Vì \(\Delta=0\)nên pt có 2 nghiệm kép
\(x_1=x_2=\frac{-b}{2a}=\frac{12}{2.4}=\frac{3}{2}\)
Vậy ......
Bài 3:
\(B=x^4-4x^3-2x^2+12x+9=\left(x^4+x^3\right)-\left(5x^3+5x^2\right)+\left(3x^2+3x\right)+\left(9x+9\right)=\left(x^3-5x^2+3x+9\right)\left(x+1\right)=\left[\left(x^3+x^2\right)-\left(6x^2+6x\right)+\left(9x+9\right)\right]\left(x+1\right)=\left(x^2-6x+9\right)\left(x+1\right)^2=\left(x-3\right)^2\left(x+1\right)^2=\left[\left(x-3\right)\left(x+1\right)\right]^2\)
Bài 3:
\(B=x^4-4x^3-2x^2+12x+9\)
\(=x^4-3x^3-x^3+3x^2-5x^2+15x-3x+9\)
\(=\left(x-3\right)\left(x^3-x^2-5x-3\right)\)
\(=\left(x-3\right)\left(x^3-3x^2+2x^2-6x+x-3\right)\)
\(=\left(x-3\right)^2\cdot\left(x+1\right)^2\)
\(=\left(x^2-2x-3\right)^2\)
Đặt m = x 2 .Điều kiện m ≥ 0
Ta có: x 4 -8 x 2 – 9 =0 ⇔ m 2 -8m -9 =0
Phương trình m 2 - 8m - 9 = 0 có hệ số a = 1,b = -8,c = -9 nên có dạng a – b + c = 0
suy ra: m 1 = -1 (loại) , m 2 = -(-9)/1 =9
Ta có: x 2 =9 ⇒ x= ± 3
Vậy phương trình đã cho có 2 nghiệm : x 1 =3 ; x 2 =-3
Ta có: \(x^4-8x^3+21x^2-24x+9=0\)
\(\Leftrightarrow x^4-5x^3+3x^2-3x^3+15x^2-9x+3x^2-5x+9=0\)
\(\Leftrightarrow\left(x^2-5x+3\right)\left(x^2-3x+3\right)=0\)
\(\Leftrightarrow x^2-5x+3=0\)
\(\text{Δ}=\left(-5\right)^2-4\cdot1\cdot3=25-12=13\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{5-\sqrt{13}}{2}\\x_2=\dfrac{5+\sqrt{13}}{2}\end{matrix}\right.\)
x^4 + 2x^3 + 5x^2 + 4x-12 = 0
<=> (x^4 - x^3) + (3x^3-3x^2) + (8x^2 - 8x) + (12x-12) = 0
<=> (x-1).(x^3 + 3x^2 + 8x+12) = 0
<=> (x-1).[(x^3+2x^2)+(x^2+2x)+(6x+12)] = 0
<=>(x-1).(x+2).(x^2+x+6) = 0
<=> x= 1 hoặc x = -2
x4 - 4x3 + 12x -9 = 0
<=> x4 - x3 - 3x3 + 3x2 - 3x2 + 3x + 9x - 9 = 0
<=> x3(x-1) - 3x2(x-1) - 3x(x-1) + 9(x-1) = 0
<=> (x-1)(x3 - 3x2 - 3x + 9) = 0
<=> (x-1)[x2(x-3) - 3(x-3)] = 0
<=> (x-1)(x-3)(x2 - 3) = 0
=> x-1 = 0 hoặc x - 3= 0 hoặc x2 - 3 = 0
=> x = 1 hoặc x = 3 hoặc x = \(\pm\sqrt{3}\)
Vậy S = ...