Cho hình thang ABCD có AB//CD, AC giao BD tại O. Đường tròn ngoại tiếp tam giác AOD và BOC cắt nhau tại K (K khác O). M là trung điểm CD. CMR: góc MOD = góc KOC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đầu tiên ta chứng minh bổ đề sau:
Cho tam giác \(ABC\) nội tiếp \(\left(O\right)\). Tiếp tuyến tại \(B,C\) của \(\left(O\right)\) cắt nhau tại \(T\). \(TA\) cắt lại \(\left(O\right)\) tại \(D\). \(M\) là trung điểm \(BC\). CM: \(\widehat{BAD}=\widehat{MAC}\).
Giải: Gọi \(L\) là trung điểm \(AD\). Khi đó \(\widehat{OBT}=\widehat{OCT}=\widehat{OLT}=90^o\) nên ngũ giác \(TBLOC\) nội tiếp.
Do vậy, \(\widehat{BLT}=\widehat{BCT}=\widehat{BDC}\). Suy ra cặp góc bù với chúng là \(\widehat{BLD}=\widehat{BAC}\).
Đến đây chứng minh được tam giác \(BLD,BAC\) đồng dạng.
Lập tỉ lệ cạnh rồi dựa vào trung điểm chứng minh được tam giác \(BAD,MAC\) đồng dạng.
Vậy 2 góc cần chứng minh bằng nhau (đpcm).
-------
Trở lại bài toán. (Ở phần dưới mình có dùng tính chất của phương tích và trục đẳng phương. Tuy ko có trong chương trình nhưng nó khá dễ và chứng minh được bằng kiến thức lớp 9. Bạn có thể tự tìm hiểu thêm).
Với lại hình của mình hơi sai một chút, mong bạn thông cảm.
Ý tưởng là ta sẽ chứng minh \(KO\) và hai tiếp tuyến tại \(C,D\) của đường tròn ngoại tiếp tam giác \(DOC\) đồng quy. Nếu làm được điều đó thì theo bổ đề trên sẽ có đpcm.
\(AB\) cắt đường tròn ngoại tiếp tam giác \(AOD,BOC\) lần lượt tại \(E,F\).
Khi đó \(\widehat{EDO}=\widehat{EAO}=\widehat{OCD}\) nên CM được \(ED\) tiếp xúc đường tròn ngoại tiếp tam giác \(DOC\).
CM tương tự thì \(FC\) cũng vậy.
Bây giờ cho \(ED\) cắt \(FC\) tại \(L\).
(Bạn thử tự CM \(LE=LF,LD=LC\) xem).
Do đó \(LE.LD=LF.LC\) nên điểm \(L\) có cùng phương tích đến 2 đường tròn 2 bên.
Vậy điểm \(L\) nằm trên trục đẳng phương của 2 đường tròn này, tức là đường thẳng \(OK\).
Ta đã CM được 3 đường cần CM đồng quy, theo bổ đề suy ra đpcm.
a) Ta thấy: Điểm K nằm trên đường tròn ngoại tiếp \(\Delta\)BDE nên tứ giác DKBE nội tiếp đường tròn
=> ^BEK = ^BDK (2 góc nội tiếp cùng chắn cung BK) hay ^AEK = ^FDK
Mà tứ giác DKFC nội tiếp đường tròn => ^FDK = ^FCK
Nên ^AEK = ^FCK hay ^AEK = ^ACK => Tứ giác AKCE nội tiếp đường tròn
=> ^KAE = ^KCD (Cùng bù ^KCE) hay ^KAB = ^KCD
Do tứ giác BKDE nội tiếp đường tròn nên ^KDE = ^KBA hay ^KBA = ^KDC
Xét \(\Delta\)DKC và \(\Delta\)BKA có: ^KAB = ^KCD; ^KBA = ^KDC => \(\Delta\)DKC ~ \(\Delta\)BKA (g.g)
=> \(\frac{KC}{KA}=\frac{KD}{KB}\Rightarrow\frac{KC}{KD}=\frac{KA}{KB}\).
Đồng thời ^DKC = ^BKA => ^DKC + ^BKC = ^BKA + ^BKC => ^BKD = ^AKC
Xét \(\Delta\)KBD và \(\Delta\)KAC có: ^BKD = ^AKC; \(\frac{KC}{KD}=\frac{KA}{KB}\)=> \(\Delta\)KBD ~ \(\Delta\)KAC (c.g.c)
=> ^KBD = ^KAC hoặc ^KBF = ^KAF => Tứ giác AKFB nội tiếp đường tròn
=> ^BKF = ^BAF (2 góc nội tiếp chắn cung BF) => ^BKF = ^BAC = ^BDC (Do ^BAC và ^BDC cùng chắn cung BC) (1)
Ta có: ^BDC = ^FDC = ^FKC (Cùng chắn cung FC) (2)
Xét \(\Delta\)BMC: ^BMC + ^MBC + ^MCB = 1800. Mà ^MBC = ^BAC; ^MCB = ^BDC (Góc tạo bởi tiếp tuyến và dây cung)
Nên ^BAC + ^BDC + ^BMC = 1800 (3)
Thế (1); (2) vào (3) ta được: ^BKF + ^FKC + ^BMC = 1800 => ^BKC + ^BMC = 1800
=> Tứ giác BKCM nội tiếp đường tròn (đpcm).
b) Ta có: ^BKF = ^BDC (cmt) => ^BKF = ^BDE = ^BKE (Do tứ giác DKBE nội tiếp đường tròn)
Mà 2 điểm F và E nằm cùng phía so với BK => 3 điểm K;F;E thẳng hàng. Hay F nằm trên KE (*)
Mặt khác: ^BKF = ^CKF (Vì ^BKF = ^BAC; ^CKF = ^BDC; ^BAC = ^BDC)
=> ^BKE = ^CKE (Do K;F;E thẳng hàng) => ^KE là phân giác của ^BKC (4)
Xét tứ giác BKCM nội tiếp đường tròn: ^MBC = ^MKC; ^MCB = ^MKB
Lại có: \(\Delta\)BCM cân ở M do MB=MC (T/c 2 tiếp tuyến giao nhau) => ^MBC=^MCB
Từ đó: ^MKC = ^MKB => KM là phân giác của ^BKC (5)
Từ (4) và (5) suy ra: 3 điểm K;M;E thẳng hàng. Hoặc M nằm trên KE (**)
Từ (*) và (**) => 3 điểm E;M;F thẳng hàng (đpcm).
2 đường chéo AC; BD cắt nhau tại O. Do hình thang ABCD cân (AB//CD)
=> OA=OB; OC=OD (Tự chứng minh)
Mà ^AOB=600 => ^COD=600 (Đối đỉnh) => Tam giác AOB và tam giác COD đều.
Xét tam giác AOB đều: H là trung điểm OA => BH vuông góc OA
=> Tam giác BHC vuông tại H; K là trung điểm của BC => HK=BK=CK=BC/2 (1)
Tương tự: Tam giác CIB vuông tại I, K là trung điểm BC => IK=CK=BK=BC/2 (2)
Xét tam giác AOD: H là trung điểm OA; I là trung điểm OD => IH là đường trung bình tam giác AOD.
=> IH=AD/2. Mà hình thang ABCD cân (AB//CD) => AD=BC => IH=BC/2 (3)
Từ (1); (2) và (3) => HK=IK=IH => Tam giác HIK là tam giác đều (đpcm).
a) Ta thấy: Tứ giác BKQC nội tiếp đường tròn => ^CKQ = ^CBQ (2 góc nội tiếp cùng chắn cung CQ) (1)
Ta có: MK // AD => ^CKM = ^CAD (Đồng vị) . Mà ^CAD = ^CBD (Cùng chắn cung CD) => ^CKM = ^CBD (2)
Từ (1) và (2) => ^CKQ = ^CKM => 2 tia KQ và KM trùng nhau => 3 điểm K,M,Q thẳng hàng (đpcm).
b) Sửa đề: "5 điểm M,S,Q,R,T thẳng hàng ?"
Chứng minh tương tự câu a, ta có: 3 điểm L,M,R thẳng hàng => ^RMQ = ^KML (Đối đỉnh)
Tứ giác AKML là hình bình hành => ^KML = ^KAL = ^CAD. Do đó; ^RMQ = ^CAD (3)
Lại có: ^RTQ = ^RED (Cùng chắn cung RD); ^RED = ^CED = ^CAD => ^RTQ = ^CAD (4)
Từ (3) và (4) => ^RMQ = ^RTQ => Tứ giác RTMQ nội tiếp hay 4 điểm R,T,M,Q thuộc 1 đường tròn (*)
Mặt khác: ^TRS = ^BDE = ^BCE = ^TQS => Tứ giác TRQS nội tiếp hay 4 điểm T,R,Q,S thuộc 1 đường tròn (**)
Từ (*) và (**) => 5 điểm M,S,Q,R,T cùng thuộc 1 đường tròn (đpcm).
c) Giả sử S là 1 điểm chung của (PQR) và (O). Kẻ tia tiếp tuyến Fx của (O). Ta chứng minh Fx cũng là tiếp tuyến của (PQR)
Thật vậy: Gọi giao điểm thứ hai của AF với (PQR) là N. Kéo dài tia AP cắt (O) tại I.
Do L,M,R thẳng hàng; ML // AC => MR // AC => ^RMF = ^CAF (Đồng vị). Mà ^CAF = ^REF
Nên ^RMF = ^REF => Tứ giác EMRF nội tiếp => ^RFM = ^REM hay ^RFN = ^REM
Ta thấy: ^RFN = ^RPN => ^REM = ^RPN. Do 2 góc này đồng vị nên PN // EM hoặc PN // BE (5)
Xét đường tròn (O): 2 dây CD // BE => (BC=(DE => ^BAC = ^EAD
Có ^MAB = ^PAE => ^MAB - ^BAC = ^PAE - ^EAD => ^CAF = ^DAI => (CF=(ID
Xét (O): (CF = (ID, F và I nằm cùng phía so với CD => IF // CD => IF // BE (6)
Từ (5) và (6) => PN // IF => ^FIA = ^NPA (Đồng vị)
Dễ dàng c/m được PF = PI (\(\Delta\)PCF = \(\Delta\)PDI) => ^PIF = ^PFI hay ^FIA = ^PFI
Ta lại có: ^PFx = ^PFI + ^IFx = ^FIA + ^FAI = ^NPA + ^FAI = ^NPA + ^NAP = ^FNP (Góc ngoài)
Mà ^FNP = 1/2.Sđ(FP => ^PFx = 1/2.Sđ(FP => Fx là tia tiếp tuyến của đường tròn (PQR) => Đpcm.
Sorry, "5 điểm M,S,Q,R,T cùng nằm trên 1 đường tròn", mik gõ lộn :(
a. Ta thấy ngay BCDO là tứ giác nội tiếp nên \(\widehat{MBO}=\widehat{ODC}\) (Góc ngoài tại đỉnh đổi)
b. Xét tam giác CMN có CO là đường cao đồng thời phân giác, vậy nó là tam giác cân. Từ đó suy ra \(\widehat{CMA}=\widehat{CNA}\)
Do ABCD là hình bình hành nên \(\widehat{CNA}=\widehat{BAM}\Rightarrow\widehat{BAM}=\widehat{BMA}\Rightarrow BM=BA=DC\left(1\right)\)
Xét trong đường tròn ngoại tiếp tam giác BDC có \(\widehat{BCO}=\widehat{DCO}\Rightarrow BO=OD\left(2\right)\)
Theo câu a, \(\widehat{MBO}=\widehat{ODC}\left(3\right)\)
Từ (1), (2), (3) suy ra \(\Delta OBM=\Delta ODC\left(g-c-g\right)\)