Cho P= (ax^2 + bx +c)/(mx^2 + nx + p) CMR : nếu (a/m) = (b/n)= (c/p) thì giá trị của P không phụ thuộc vào x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho P= \(\frac{ax^2+bx+c}{a_1x^2+b_1x+c_1}\).CMR nếu a/a1=b/b1=c/c1 thì giá trị P ko phụ thuộc vào x
\(\text{Đặt }\frac{m}{a}=\frac{n}{b}=\frac{k}{c}=l,\text{ ta có: }\)
\(m=al,n=bl,k=cl\)
\(A=\frac{alx+bly+clz}{ax+by+cz}=\frac{l\left(ax+by+cz\right)}{ax+by+cz}=l\)
Vậy..
\(2,2.\left(x+y\right)=5.\left(y+z\right)=3.\left(x+z\right)\Leftrightarrow\frac{x+y}{5}=\frac{y+z}{2},\frac{y+z}{3}=\frac{x+z}{5}\)
\(\Leftrightarrow\frac{x+y}{15}=\frac{y+z}{6}=\frac{x+z}{10}=\frac{y+z-x-z}{6-10}=\frac{y-x}{-4}=\frac{x-y}{4}=\frac{x+y-x-z}{15-10}=\frac{y-z}{5}\)
\(\Rightarrow\frac{x-y}{4}=\frac{y-z}{5}\left(đpcm\right)\)
Áp dụng tính chất cua dãy tỉ số bằng nhau ta có:
\(\frac{a}{a_1}=\frac{b}{b_1}=\frac{c}{c_1}=\frac{ax^2}{a_1x^2}=\frac{bx}{b_1x}=\frac{c}{c_1}=\frac{ax^2+bx+c}{a_1x^2+b_1x+c_1}=P\)
=>\(P=\frac{a}{a_1}\)
=>Giá trị của P phụ thuộc vào a và a1
VậyGiá trị của P không phụ thuộc vào x
Đặt \(\frac{a}{a_1}=\frac{b}{b_1}=\frac{c}{c_1}=k\)=>\(a=k\cdot a_1\), \(b=k\cdot b_1\), \(c=k\cdot c_1\)
=> \(P=\frac{a\cdot x^2+b\cdot x+c}{a_1\cdot x^2+b_1\cdot x+c_1}=\frac{k\cdot a_1\cdot x^2+k\cdot b_1\cdot x+k\cdot c_1}{a_1\cdot x^2+b_1\cdot x+c_1}=\frac{k\cdot\left(a_1\cdot x^2+b_1\cdot x+c_1\right)}{a_1\cdot x^2+b_1\cdot x+c_1}=k\)
Vậy khi \(\frac{a}{a_1}=\frac{b}{b_1}=\frac{c}{c_1}=k\)thì \(P\) luôn bằng k với mọi x
(Nhớ tick cho mình nha)