Giải hệ phương trình: \(\hept{\begin{cases}\left(x+y\right)\left(x^2-y^2\right)=45\\\left(x-y\right)\left(x^2+y^2\right)=85\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình như đề bài sai..mk thấy vế trái của cả 2 pt nó chả khác j nhau cả
Ta có \(\left(x-y\right)\left(x^2-y^2\right)=\left(x+y\right)\left(x^2+y^2\right)\Leftrightarrow x^3-x^2y-xy^2+y^3=x^3+x^2y+xy^2+y^3\)
<=> 2xy(x+y)=0
đến đây tìm mối quan hệ và tự giải nhá
\(\text{Condition}:x>y\)
HPT\(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)\left(x^2+y^2\right)=20\\\left(x+y\right)^2\left(x-y\right)=32\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x^2+y^2\right)\left(x-y\right)=20\\\frac{5}{8}\left(x+y\right)^2\left(x-y\right)=20\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x^2+y^2\right)\left(x-y\right)=20\left(1\right)\\\left(x-y\right)\left[\left(x^2+y^2\right)-\frac{5}{8}\left(x+y\right)^2\right]=0\left(2\right)\end{cases}}\)
(2)\(\Leftrightarrow\orbr{\begin{cases}x=y\\\frac{3}{8}x^2+\frac{3}{8}y^2-\frac{5}{4}xy=0\left(3\right)\end{cases}}\)
y=0 khong phai nghiem cua HPT
(3)\(\Leftrightarrow\frac{x^2}{y^2}-\frac{5x}{4y}+\frac{3}{8}=0\)
\(\Rightarrow\Delta=\frac{1}{16}>0\left(t=\frac{x}{y}>1\right)\)
\(\Rightarrow2x=3y;x=y\)
Thay vao roi tinh :D
Những bài còn lại chỉ cần phân tích ra rồi rút gọn là được nha. Bạn tự làm nha!
Đặt \(\hept{\begin{cases}x+y=a\\x-y=b\end{cases}}\)\(\Rightarrow\)ta có hệ \(\hept{\begin{cases}2a+3b=4\\a+2b=5\end{cases}}\Rightarrow\hept{\begin{cases}a=-7\\b=6\end{cases}}\)Từ đó ta có \(\hept{\begin{cases}x+y=-7\\x-y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{13}{2}\end{cases}}\)PS: Cái đề chỗ 3(x+y) phải thành 3(x-y) chứ
Đúng đó Bạc hồi xưa cứ đến tiết Toán là lại trốn đi chơi net k à !!
a) Cách 1: Thực hiện nhân phá ngoặc và thu gọn, ta được:
{2(x+y)+3(x−y)=4(x+y)+2(x−y)=5{2(x+y)+3(x−y)=4(x+y)+2(x−y)=5
⇔{2x+2y+3x−3y=4x+y+2x−2y=5⇔{2x+2y+3x−3y=4x+y+2x−2y=5
⇔{5x−y=43x−y=5⇔{2x=−13x−y=5⇔{5x−y=43x−y=5⇔{2x=−13x−y=5
⇔⎧⎨⎩x=−12y=3x−5⇔⎧⎪ ⎪⎨⎪ ⎪⎩x=−12y=3.−12−5⇔{x=−12y=3x−5⇔{x=−12y=3.−12−5
⇔⎧⎪ ⎪⎨⎪ ⎪⎩x=−12y=−132⇔{x=−12y=−132
Vậy hệ đã cho có nghiệm duy nhất là (−12;−132)(−12;−132).
Cách 2: Đặt ẩn phụ.
Đặt {x+y=ux−y=v{x+y=ux−y=v ta có hệ phương trình mới (ẩn u, vu, v )
{2u+3v=4u+2v=5⇔{2u+3v=42u+4v=10{2u+3v=4u+2v=5⇔{2u+3v=42u+4v=10
⇔{2u+3v=4−v=−6⇔{2u+3v=4v=6⇔{2u+3v=4−v=−6⇔{2u+3v=4v=6
⇔{2u=4−3.6v=6⇔{u=−7v=6⇔{2u=4−3.6v=6⇔{u=−7v=6
Suy ra hệ đã cho tương đương với:
{x+y=−7x−y=6⇔{2x=−1x−y=6{x+y=−7x−y=6⇔{2x=−1x−y=6
⎧⎨⎩x=−12y=x−6⇔⎧⎪ ⎪⎨⎪ ⎪⎩x=−12y=−132{x=−12y=x−6⇔{x=−12y=−132
Vậy hệ đã cho có nghiệm duy nhất là (−12;−132)(−12;−132).
b) Thu gọn vế trái của hai phương trình, ta được:
{2(x−2)+3(1+y)=−23(x−2)−2(1+y)=−3{2(x−2)+3(1+y)=−23(x−2)−2(1+y)=−3
⇔ {2x−4+3+3y=−23x−6−2−2y=−3{2x−4+3+3y=−23x−6−2−2y=−3
⇔ {2x+3y=−13x−2y=5{2x+3y=−13x−2y=5 ⇔ {6x+9y=−36x−4y=10{6x+9y=−36x−4y=10
⇔{6x+9y=−313y=−13{6x+9y=−313y=−13⇔ {6x=−3−9yy=−1{6x=−3−9yy=−1
⇔ {6x=6y=−1{6x=6y=−1 ⇔ {x=1y=−1{x=1y=−1
Vậy hệ phương trình đã cho có nghiệm duy nhất là (1;−1)(1;−1).
Bạn kham khảo nhé.
Giải hệ phương trình (x+y)(x^2-y^2)=45 và (x-y)(x^2+y^2)=85