so sánh A = \(\dfrac{4}{7}+5+\dfrac{3}{7^2}+\dfrac{5}{7^3}+\dfrac{6}{7^4}\) và B = \(\dfrac{5}{7^4}+5+\dfrac{6}{7^2}+\dfrac{4}{7}+\dfrac{5}{7^3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{-7}{6}=\dfrac{-7\cdot3}{6\cdot3}=\dfrac{-21}{18}\)
\(\dfrac{-11}{9}=\dfrac{-11\cdot2}{9\cdot2}=\dfrac{-22}{18}\)
mà -21>-22
nên \(-\dfrac{7}{6}>-\dfrac{11}{9}\)
b: \(\dfrac{5}{-7}=\dfrac{-5}{7}=\dfrac{-5\cdot5}{7\cdot5}=\dfrac{-25}{35}\)
\(\dfrac{-4}{5}=\dfrac{-4\cdot7}{5\cdot7}=\dfrac{-28}{35}\)
mà -25>-28
nên \(\dfrac{5}{-7}>\dfrac{-4}{5}\)
c: \(\dfrac{-8}{7}< -1\)
\(-1< -\dfrac{2}{5}\)
Do đó: \(-\dfrac{8}{7}< -\dfrac{2}{5}\)
d: \(-\dfrac{2}{5}< 0\)
\(0< \dfrac{1}{3}\)
Do đó: \(-\dfrac{2}{5}< \dfrac{1}{3}\)
Bài 3 :
\(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}\)
\(\dfrac{1}{2!}=\dfrac{1}{2.1}=1-\dfrac{1}{2}< 1\)
\(\dfrac{1}{3!}=\dfrac{1}{3.2.1}=1-\dfrac{1}{2}-\dfrac{1}{3}< 1\)
\(\dfrac{1}{4!}=\dfrac{1}{4.3.2.1}< \dfrac{1}{3!}< \dfrac{1}{2!}< 1\)
.....
\(\)\(\dfrac{1}{2023!}=\dfrac{1}{2023.2022....2.1}< \dfrac{1}{2022!}< ...< \dfrac{1}{2!}< 1\)
\(\Rightarrow\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}< 1\)
a) \(\dfrac{3}{7}+4=\dfrac{3}{7}+\dfrac{4}{1}=\dfrac{3}{7}+\dfrac{28}{7}=\dfrac{31}{7}\)
b) \(\dfrac{5}{9}\times3=\dfrac{5\times3}{9}=\dfrac{15}{9}=\dfrac{5}{3}\)
c) \(\dfrac{7}{8}-\dfrac{2}{9}=\dfrac{63}{72}-\dfrac{16}{72}=\dfrac{47}{72}\)
d) \(5-\dfrac{3}{4}=\dfrac{5}{1}-\dfrac{3}{4}=\dfrac{20}{4}-\dfrac{3}{4}=\dfrac{17}{4}\)
e) \(\dfrac{5}{7}:6=\dfrac{5}{7}:\dfrac{6}{1}=\dfrac{5}{7}\times\dfrac{1}{6}=\dfrac{5}{42}\)
f) \(\dfrac{5}{6}\times\dfrac{2}{7}=\dfrac{5\times2}{6\times7}=\dfrac{10}{42}=\dfrac{5}{21}\)
g) \(3+\dfrac{3}{4}=\dfrac{3}{1}+\dfrac{3}{4}=\dfrac{12}{4}+\dfrac{3}{4}=\dfrac{15}{4}\)
h) \(\dfrac{3}{5}\times\dfrac{4}{8}=\dfrac{3\times4}{5\times8}=\dfrac{12}{40}=\dfrac{3}{10}\)
i) \(5:\dfrac{3}{8}=\dfrac{5}{1}:\dfrac{3}{8}=\dfrac{5}{1}\times\dfrac{8}{3}=\dfrac{40}{3}\)
\(\dfrac{3}{7}+\dfrac{4}{1}=\dfrac{3}{7}+\dfrac{28}{7}=\dfrac{31}{7}\)
\(\dfrac{5}{9}\times3=\dfrac{5}{9}\times\dfrac{3}{1}=\dfrac{15}{9}=\dfrac{5}{3}\)
\(\dfrac{7}{8}-\dfrac{2}{9}=\dfrac{63}{72}-\dfrac{16}{72}=\dfrac{47}{72}\)
\(\dfrac{5}{1}-\dfrac{3}{4}=\dfrac{20}{4}-\dfrac{3}{4}=\dfrac{17}{4}\)
\(\dfrac{5}{7}:\dfrac{6}{1}=\dfrac{5}{7}\times\dfrac{1}{6}=\dfrac{5}{42}\)
\(\dfrac{5}{6}\times\dfrac{2}{7}=\dfrac{5\times2}{6\times7}=\dfrac{10}{42}=\dfrac{5}{21}\)
\(\dfrac{3}{1}+\dfrac{3}{4}=\dfrac{12}{4}+\dfrac{3}{4}=\dfrac{15}{4}\)
\(\dfrac{3}{5}\times\dfrac{4}{8}=\dfrac{3}{5}\times\dfrac{1}{2}=\dfrac{3\times1}{5\times2}=\dfrac{3}{10}\)
\(\dfrac{5}{1}:\dfrac{3}{8}=\dfrac{5}{1}\times\dfrac{8}{3}=\dfrac{40}{3}\)
a: \(=6+\dfrac{4}{5}-1-\dfrac{2}{3}-3-\dfrac{4}{5}\)
\(=2-\dfrac{2}{3}=\dfrac{4}{3}\)
b: \(=7+\dfrac{5}{9}-2-\dfrac{3}{4}-3-\dfrac{5}{9}=2-\dfrac{3}{4}=\dfrac{5}{4}\)
c: =6+7/7-1-3/4-2-5/7
=3+2/7-3/4
=84/28+8/28-21/28
=84/28-13/28
=71/28
\(a,A=\dfrac{\dfrac{5}{4}+\dfrac{5}{5}+\dfrac{5}{7}-\dfrac{5}{11}}{\dfrac{10}{4}+\dfrac{10}{5}+\dfrac{10}{7}-\dfrac{10}{11}}\\ =\dfrac{5.\left(\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}{10.\left(\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}\\ =\dfrac{5}{10}\\ =\dfrac{1}{2}\)
Vậy \(A=\dfrac{1}{2}\)
\(b,B=\dfrac{2+\dfrac{6}{5}-\dfrac{6}{7}-\dfrac{6}{11}}{\dfrac{2}{3}+\dfrac{2}{5}-\dfrac{2}{7}-\dfrac{2}{11}}\\ =\dfrac{3.\left(\dfrac{2}{3}+\dfrac{2}{5}-\dfrac{2}{7}-\dfrac{2}{11}\right)}{\dfrac{2}{3}+\dfrac{2}{5}-\dfrac{2}{7}-\dfrac{2}{11}}\\ =3\)
Vậy \(B=3\)
bài 1
a)\(=\dfrac{16}{40}+\dfrac{15}{40}=\dfrac{31}{40}\)
b)\(=\dfrac{7}{6}-\dfrac{4}{6}=\dfrac{3}{6}=\dfrac{1}{2}\)
c)\(=\dfrac{30}{9}=\dfrac{10}{3}\)
d)\(=\dfrac{8}{5}\times\dfrac{7}{4}=\dfrac{56}{20}=\dfrac{14}{5}\)