K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ABED có 

\(\widehat{A}=\widehat{D}=\widehat{BED}\)

Do đó: ABED là hình chữ nhật

19 tháng 12 2014

Tam giác AIE vuông tại I có IN là trung tuyến nên \(IN=\frac{AE}{2}\). Mà AE = BD ( ABED là hình chữ nhật )

Do đó \(IN=\frac{BD}{2}\). Vậy tam giác BID vuông tại I

a: Xét tứ giác ABED có

góc BAD=góc ADE=góc BED=90 độ

nên ABED là hình chữ nhật

b: Xét tứ giác BMCD có

BM//CD
BM=CD
Do đo; BMCD là hình bình hành

c:

Gọi O là trung điểm của AE

góc AIE=90 độ

mà IO là trung tuyến

nên IO=AE/2=BD/2

Xét ΔIBD có

IO là trung tuyến

IO=BD/2

Do đó: ΔIBD vuông tại I

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thangBài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thang

Bài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:

a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông 

Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của AC và BD. C/minh EA = EB

Bài 4: Cho ABCD là hình thang ( AB // CD, AB < CD ). Kẻ các đường cao AE,BF của hình thang. C/minh rằng DE = CF 

Bài 5: Cho ABCD là hình thang ( AB // CD ) có DB là đường phân giác góc D và AE là đường phân giác góc A ( E thuộc DC ). Biết AE // BC và O là giao điểm của AE với DB. CMR:

a) AE vuông góc với DB

b) AD // BE và AD = BE

c) E là trung điểm của DC 

d) Xác định dạng của tứ giác BCEO

e) Biết góc BEC = 80 độ. Hãy tính các góc của hình thang ABCD 

1

Bài 4:

Xét ΔAED vuông tại E và ΔBFC vuông tại F có

AD=BC

góc D=góc C

Do đó: ΔAED=ΔBFC

=>DE=CF
Bài 3:

a: Xét ΔADC và ΔBCD có

AD=BC

AC=BD

DC chung

Do đó: ΔADC=ΔBCD

=>góc ACD=góc BDC

b: Ta co: góc ACD=góc BDC

=>góc EAB=góc EBA
=>ΔEAB cân tại E

24 tháng 6 2016

HÌnh bạn tự vẽ nha.

1/Theo định lí đường tb của hình thang thì:

CK=\(\frac{AB+EM}{2}=\frac{10+14}{2}=12\)

2/a/Ta có:TỨ giác AHMK có \(\hept{\begin{cases}gócA=90^o\\gócH=90^o\\gócK=90^o\end{cases}}\)

MÀ AHM+HMK+MKA+KAH=3600 \(\Rightarrow\) HMK=90o

\(\Rightarrow\)Tứ Giác AHMK là HÌnh Chữ Nhật

b/c/d/cm đó dễ mà bạn tự làm đi.