K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2019

5 tháng 4 2019

Xét hai tam giác vuông ABC và CDB, ta có:

∠ (BAC) =  ∠ (DCB) = 90 0  (1)

Mà:Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (2)

Từ (1) và (2) suy ra: △ ABC đồng dạng  △ CDB (cạnh huyền và cạnh góc vuông tỉ lệ)

Suy ra:  ∠ (ACB) =  ∠ (CBD)

⇒ BD//AC ( hai góc ở vị trí so le trong bằng nhau )

28 tháng 10 2023

a: Xét ΔDAC vuông tại A và ΔCBE vuông tại B có

DA=CB

AC=BE

Do đó: ΔDAC=ΔCBE

b: ΔDAC=ΔCBE

=>\(\widehat{DCA}=\widehat{CEB}\)

=>\(\widehat{DCA}+\widehat{ECB}=90^0\)

\(\widehat{DCA}+\widehat{DCE}+\widehat{BCE}=180^0\)(hai góc kề bù)

=>\(\widehat{DCE}+90^0=180^0\)

=>\(\widehat{DCE}=90^0\)

=>CD\(\perp\)CE

5 tháng 10 2017

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Các góc đó đều có số đo là 90°.

12 tháng 11 2019

a) Điểm E nằm giữa hai điểm C, DCD = 5cm > CE = 3cm.

b) Trong ba tia BD,BE,BC tia BE nằm giữa hai tia còn lại vì điểm E nằm giữa hai điểm C, D.

c) DE = 2cm.

d) D là trung điểm của đoạn thẳng AE vì AD = DE = 2cm.

e) Đoạn thẳng BD là cạnh, của các tam giác: BDA, BDE,BDC.

9 tháng 4 2019

a, áp dụng định lí py-ta-go ta có:

          \(AB^2+AC^2=BC^2\)

=>\(BC^2\)=64+36=100(cm)

=>BC=10cm

vậy  BC=10cm

b,xét 2t.giác vuông ABE và DBE có:

          EB chung

          AB=BD(gt)

=>t.giác ABE=t.giác DBE(cạnh huyền-cạnh góc vuông)

c,xét 2 t.giác vuông  AEF và t.giác DEC có:

            AE=DE(theo câu b)

            \(\widehat{AEF}\)=\(\widehat{DEC}\)(vì đối đỉnh)

=>t.giác AEF=t.giác DEC(cạnh góc vuông-góc nhọn)

=>AF=DC mà BA=BD(gt) suy ra BF=BC

d,gọi O là giao điểm của BE và CF 

xét t.giác BFO và t.giác BCO có:

            BF=BC(theo câu c)

            \(\widehat{FBO}\)=\(\widehat{CBO}\)(theo câu b)

            BO cạnh chung

=> t.giác BFO=t.giác BCO(c.g.c)

=>CO=OF =>O là trung điểm của CF(1); \(\widehat{COB}\)=\(\widehat{FOB}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{COB}\)=\(\widehat{FOB}\)=90 độ =>BO\(\perp\)CF(2)

Từ (1) và (2) suy ra BE là trung trực của CF

học tốt!