cho tam giac ABC can tai A biet tgB=4/3 va BC=10.tinh AB;AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Từ \(\left\{\begin{matrix} AB=AC\\ AB+AC=10\end{matrix}\right.\Rightarrow AB=AC=5\) (cm)
Áp dụng định lý Pitago cho tam giác vuông $ABC$ ta có:
\(BC^2=AB^2+AC^2=5^2+5^2=50\)
\(\Rightarrow BC=\sqrt{50}=5\sqrt{2}\) (cm)
Ta có: AB=AC và AB+AC=10
\(\Rightarrow\) AB=AC=\(\dfrac{10}{2}\) =5
Áp dụng tính chất của định lý Pi-ta-go, ta có:
\(BC=\sqrt{AC^2+AB^2}\)
\(\Rightarrow BC=\sqrt{5^2+5^2}\)
\(BC=25\)
Vậy ............................
AB+AC=17
AB-AC=7
=>AB=(17+7)/2=12cm; AC=12-7=5cm
=>BC=13cm
AH là đường cao tam giác ABC cân tại A nên cũng là trung tuyến
\(\Rightarrow BH=HC=\dfrac{1}{2}BC=8\)
Ta có \(\cos\widehat{B}=\dfrac{BH}{AB}=\dfrac{8}{17}\approx\cos61^0\)
Do đó \(\widehat{B}=\widehat{C}\approx61^0\left(\Delta ABC.cân.tại.A\right)\)
Ta có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\Rightarrow\widehat{A}=180^0-2\cdot61^0=58^0\)
Ta có \(AH=\sin\widehat{B}\cdot AB=\sin61^0\cdot17\approx0,9\cdot17=15,3\)
a: XétΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó ΔAMB=ΔAMC
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
=>góc AMB=góc AMC=90 độ
c: BM=CM=CB/2=5cm
=>AM=12cm
Sai đề cân tại A sao có tỉ số lượng giác ???
Cân tại A thì vẫn có tslg á. Chỉ cần kẻ thêm đg cao tạo thành tam giác vuông là ddc r