K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2021

Sai đề cân tại A sao có tỉ số lượng giác ???

30 tháng 9 2021

Cân tại A thì vẫn có tslg á. Chỉ cần kẻ thêm đg cao tạo thành tam giác vuông là ddc r

30 tháng 9 2021

AH là đường cao tam giác ABC cân tại A nên cũng là trung tuyến

\(\Rightarrow BH=HC=\dfrac{1}{2}BC=8\)

Ta có \(\cos\widehat{B}=\dfrac{BH}{AB}=\dfrac{8}{17}\approx\cos61^0\)

Do đó \(\widehat{B}=\widehat{C}\approx61^0\left(\Delta ABC.cân.tại.A\right)\)

Ta có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\Rightarrow\widehat{A}=180^0-2\cdot61^0=58^0\)

Ta có \(AH=\sin\widehat{B}\cdot AB=\sin61^0\cdot17\approx0,9\cdot17=15,3\)

30 tháng 9 2021

thank

 

AH
Akai Haruma
Giáo viên
17 tháng 9 2021

Lời giải:
Áp dụng định lý Pitago cho tam giác vuông $ABH$:

$BH=\sqrt{AB^2-AH^2}=\sqrt{5^2-4^2}=3$ (cm)

Áp dụng hệ thức lượng trong tam giác vuông:

$AH^2=BH.CH$
$\Rightarrow CH=\frac{AH^2}{BH}=\frac{4^2}{3}=\frac{16}{3}$ (cm)

$BC=BH+CH=3+\frac{16}{3}=\frac{25}{3}$ (cm)

Áp dụng định lý Pitago cho tam giác $AHC$ vuông:

$AC=\sqrt{AH^2+CH^2}=\sqrt{4^2+(\frac{16}{3})^2}=\frac{20}{3}$ (cm)

AH
Akai Haruma
Giáo viên
17 tháng 9 2021

Hình vẽ:

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔACE vuông tại A có AF là đường cao ứng với cạnh huyền CE, ta được:

\(CF\cdot CE=CA^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AD là đường cao ứng với cạnh huyền BC, ta được:

\(CD\cdot CB=CA^2\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra \(CF\cdot CE=CD\cdot CB\)

Bài 2:

a: AB/3=AC/4=k

=>AB=3k; AC=4k

Ta có: \(AB^2+AC^2=BC^2\)

=>\(25k^2=100\)

=>k=2

=>AB=6cm; AC=8cm

b: Xét ΔBAC có BM là phân giác

nên MA/AB=MC/BC

=>MA/3=MC/5

Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:

\(\dfrac{MA}{3}=\dfrac{MC}{5}=\dfrac{8}{8}=1\)

=>MA=3cm