Giải phương trình :
\(2sin3x+3cos3x=-2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\dfrac{1}{2}sinx+\dfrac{\sqrt{3}}{2}cosx=sin3x\)
\(\Leftrightarrow sin\left(x+\dfrac{\pi}{3}\right)=sin3x\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=x+\dfrac{\pi}{3}+k2\pi\\3x=\dfrac{2\pi}{3}-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k\pi\\x=\dfrac{\pi}{6}+\dfrac{k\pi}{2}\end{matrix}\right.\)
\(\Leftrightarrow x=\dfrac{\pi}{6}+\dfrac{k\pi}{2}\)
Chọn A
Ta có: sin 3 x + 3 cos 3 x – 3 sin x cos 2 x – sin 2 x cos x = 0
Do cosx=0 không là nghiệm của phương trình nên chia hai vế cho cos 3 x ≠ 0 ta được phương trình:
2sin3x = cosx (sin2x + cos2x)
⇔ 2sin3x - sin2x cosx - cos3x = 0
+ Xét cosx = 0 ........
+ Xét cosx khác 0 rồi chia cho cos3x rồi đưa về phương trình bậc 3 của tanx
sin3x + cos3x = sinx - cosx
Nhân cos2x + sin2x là thành câu trên
\(x=90\)