K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
30 tháng 9 2021

ĐK: \(-\sqrt{3}\le x\le\sqrt{3}\).

\(\left(x-2\right)\sqrt{3-x^2}=x^2-x-2\)

\(\Leftrightarrow\left(x-2\right)\sqrt{3-x^2}=\left(x-2\right)\left(x+1\right)\)

\(\Leftrightarrow\left(x-2\right)\left(\sqrt{3-x^2}-x-1\right)=0\)

\(\Leftrightarrow\sqrt{3-x^2}=x+1\)(vì \(-\sqrt{3}\le x\le\sqrt{3}\))

\(\Rightarrow3-x^2=\left(x+1\right)^2\)

\(\Leftrightarrow2x^2+2x-2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1+\sqrt{5}}{2}\left(tm\right)\\x=\frac{-1-\sqrt{5}}{2}\left(l\right)\end{cases}}\)

a) \(x^3-4x^2-5x+6=\sqrt[3]{7x^2+9x-4}\)

\(\Leftrightarrow-7x^2-9x+4+x^3+3x^2+4x+2=\sqrt[3]{7x^2+9x-4}\)

\(\Leftrightarrow-\left(7x^2+9x-4\right)+\left(x+1\right)^3+x+1=\sqrt[3]{7x^2+9x-4}\) (*)

Đặt \(\sqrt[3]{7x^2+9x-4}=a;x+1=b\)

Khi đó (*) \(\Leftrightarrow-a^3+b^3+b=a\)

\(\Leftrightarrow\left(b-a\right).\left(b^2+ab+a^2+1\right)=0\)

\(\Leftrightarrow b=a\)

Hay \(x+1=\sqrt[3]{7x^2+9x-4}\)

\(\Leftrightarrow\left(x+1\right)^3=7x^2+9x-4\)

\(\Leftrightarrow x^3-4x^2-6x+5=0\)

\(\Leftrightarrow x^3-4x^2-5x-x+5=0\)

\(\Leftrightarrow\left(x-5\right)\left(x^2+x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{-1\pm\sqrt{5}}{2}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
30 tháng 1 2021

Lời giải:ĐK: $x>3$

Ta có BĐT quen thuộc: $|a|+|b|\geq |a+b|$. Dấu "=" xảy ra khi $ab\geq 0$

Do đó:

$|x^2-2|+|2-\sqrt{x-3}|\geq |x^2-2+2-\sqrt{x-3}|=|x^2-\sqrt{x-3}|$

Dấu "=" xảy ra khi:

$(x^2-2)(2-\sqrt{x-3})\geq 0$

$\Leftrightarrow 2-\sqrt{x-3}\geq 0$ (do $x>3$)

$\Leftrightarrow x< 7$

Vậy $7>x> 3$ thì dấu "=" xảy ra. Nghĩa là nghiệm của BPT là 

$[7;+\infty)\cup (-\infty;3]$

AH
Akai Haruma
Giáo viên
30 tháng 1 2021

Lời giải:ĐK: $x>3$

Ta có BĐT quen thuộc: $|a|+|b|\geq |a+b|$. Dấu "=" xảy ra khi $ab\geq 0$

Do đó:

$|x^2-2|+|2-\sqrt{x-3}|\geq |x^2-2+2-\sqrt{x-3}|=|x^2-\sqrt{x-3}|$

Dấu "=" xảy ra khi:

$(x^2-2)(2-\sqrt{x-3})\geq 0$

$\Leftrightarrow 2-\sqrt{x-3}\geq 0$ (do $x>3$)

$\Leftrightarrow x< 7$

Vậy $7>x> 3$ thì dấu "=" xảy ra. Nghĩa là nghiệm của BPT là 

$[7;+\infty)\cup (-\infty;3]$

3 tháng 9 2023

1) đkxđ \(\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\y\ge0\end{matrix}\right.\)

Xét biểu thức \(P=x^3+y^3+7xy\left(x+y\right)\)

\(P=\left(x+y\right)^3+4xy\left(x+y\right)\)

\(P\ge4\sqrt{xy}\left(x+y\right)^2\)

Ta sẽ chứng minh \(4\sqrt{xy}\left(x+y\right)^2\ge8xy\sqrt{2\left(x^2+y^2\right)}\)  (*)

Thật vậy, (*)

\(\Leftrightarrow\left(x+y\right)^2\ge2\sqrt{2xy\left(x^2+y^2\right)}\)

\(\Leftrightarrow\left(x+y\right)^4\ge8xy\left(x^2+y^2\right)\)

\(\Leftrightarrow x^4+y^4+6x^2y^2\ge4xy\left(x^2+y^2\right)\) (**)

Áp dụng BĐT Cô-si, ta được:

VT(**) \(=\left(x^2+y^2\right)^2+4x^2y^2\ge4xy\left(x^2+y^2\right)\)\(=\) VP(**)

Vậy (**) đúng \(\Rightarrowđpcm\). Do đó, để đẳng thức xảy ra thì \(x=y\)

Thế vào pt đầu tiên, ta được \(\sqrt{2x-3}-\sqrt{x}=2x-6\)

\(\Leftrightarrow\dfrac{x-3}{\sqrt{2x-3}+\sqrt{x}}=2\left(x-3\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}=2\end{matrix}\right.\)

 Rõ ràng với \(x\ge\dfrac{3}{2}\) thì \(\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}\le\dfrac{1}{\sqrt{\dfrac{2.3}{2}-3}+\sqrt{\dfrac{3}{2}}}< 2\) nên ta chỉ xét TH \(x=3\Rightarrow y=3\) (nhận)

Vậy hệ pt đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(3;3\right)\)

6 tháng 1 2021

ĐK: \(x\ge1\)

\(pt\Leftrightarrow2\sqrt{\left(x-1\right)\left(x+2\right)}-\sqrt{x-1}-6\sqrt{x+2}+3=0\)

\(\Leftrightarrow\left(2\sqrt{x+2}-1\right)\left(\sqrt{x-1}-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{x+2}=1\\\sqrt{x-1}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4\left(x+2\right)=1\\x-1=9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{4}\left(l\right)\\x=10\left(tm\right)\end{matrix}\right.\)

Vậy ...

NV
8 tháng 1 2021

Xét \(f\left(x;y;z\right)=\left(3x+4y+5z\right)^2-44\left(xy+yz+zx\right)\)

\(=\left(y+2z+3\right)^2-44yz-44\left(y+z\right)\left(1-y-z\right)\)

\(=45y^2+2y\left(24z-19\right)+48z^2-32z+9\)

\(\Delta_y'=\left(24z-9\right)^2-45\left(48z^2-32z+9\right)=-44\left(6z-1\right)^2\le0\)

\(\Rightarrow f\left(x;y;z\right)\ge0\) 

13 tháng 8 2021

Ta có:\(\left(2x-5\right)\left(\sqrt{x+3}-1\right)=2x^2-x-10\)

     \(\Leftrightarrow\left(2x-5\right)\left(\sqrt{x+3}-1\right)-\left(2x^2-x-10\right)=0\)

    \(\Leftrightarrow\left(2x-5\right).\dfrac{\left(x+2\right)}{\sqrt{x+3}+1}-\left(2x-5\right)\left(x+2\right)=0\)

    \(\Leftrightarrow\left(2x-5\right)\left(x+2\right)\left(\dfrac{1}{\sqrt{x+3}+1}-1\right)=0\)

    \(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\x+2=0\\\dfrac{1}{\sqrt{x+3}+1}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-2\\\dfrac{1}{\sqrt{x+3}+1}=1\left(1\right)\end{matrix}\right.\)

Giải (1) ta có:

\(\left(1\right)\Leftrightarrow1=\sqrt{x+3}+1\)

      \(\Leftrightarrow\sqrt{x+3}=0\)

      \(\Leftrightarrow x+3=0\)

      \(\Leftrightarrow x=-3\)

Vậy,phương trình có 3 nghiệm là.....

31 tháng 10 2016

Bài 1:

Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:

\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)

\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc

\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)

1 tháng 11 2016

Câu 3: ĐK: \(x\ge0\)

Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)

Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)

\(\Rightarrow2x-4\sqrt{x-1}=0\)

Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)

1 tháng 10 2021

\(\left(\sqrt{x+3}-\sqrt{x+1}\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\left(đk:x\ge0\right)\)

\(\Leftrightarrow\dfrac{\left(\sqrt{x+3}-\sqrt{x+1}\right)\left(\sqrt{x+3}+\sqrt{x+1}\right)\left(x^2+\sqrt{\left(x+1\right)\left(x+3\right)}\right)}{\sqrt{x+3}+\sqrt{x+1}}=2x\)

\(\Leftrightarrow\dfrac{\left(x+3-x-1\right)\left(x^2+\sqrt{\left(x+1\right)\left(x+3\right)}\right)}{\sqrt{x+3}+\sqrt{x+1}}=2x\)

\(\Leftrightarrow\dfrac{x^2+\sqrt{\left(x+1\right)\left(x+3\right)}}{\sqrt{x+3}+\sqrt{x+1}}=x\)

\(\Leftrightarrow x\sqrt{x+3}+x\sqrt{x+1}-x^2-\sqrt{\left(x+1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\sqrt{x+3}\left(x-\sqrt{x+1}\right)-x\left(x-\sqrt{x+1}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{x+1}\right)\left(\sqrt{x+3}-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{x+1}\\x=\sqrt{x+3}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-1=0\\x^2-x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt{5}}{2}\left(tm\right)\\x=\dfrac{1-\sqrt{5}}{2}\left(ktm\right)\\x=\dfrac{1+\sqrt{13}}{2}\left(tm\right)\\x=\dfrac{1-\sqrt{13}}{2}\left(ktm\right)\end{matrix}\right.\)