Bai 2:Cho các hình vẽ dưới đây
a) Kể tên các cặp góc so le trong, đồng vị, trong cung phía.
b) Tính \(F_1;F_2;F_3;F_4\)
c) Hai đường thẳng a, b có song song với nhau không? Vì sao? ( nếu có giải thích bằng 2 cách)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
GIÚP MÌNH VỚI MN ƠIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
a) Các cặp góc sole trong là : S3 và R2 ; S4 và R1
Các cặp góc đồng vị là : S1 và R1; S2 và R2; S3 và R4; S4 và R3
Các góc trong cùng phía là : S3 và R1; S4 và R2
b) R4 = S3 = 120\(\)o (2 góc đồng vị)
R4 = R2 = 120o (2 góc đối đỉnh)
R2 + R1 = 180o (2 góc kề bù)
⇒ 120o + R1 =180o
⇒ R1 = 180o - 120o
⇒ R1 = 60o
R1 = S1 = 60o (2 góc đồng vị)
R1 = R3 = 60o (2 góc đối đỉnh)
S1 = S4 = 60o (2 góc đối đỉnh)
a, Các cặp góc so le trong là : M4 và N2; M3 và N1
Các cặp góc đồng vị là : M1 và N1; M2 và N2; M3 và N3; M4 và N4
Các cặp góc trong cùng phía là : M4 và N1; M3 và N2
b, N2 = N4 = 50o (2 góc đối đỉnh)
M4 = M2 = 50o (2 góc đối đỉnh)
N2 + N1 = 180o (2 góc kề bù)
⇒ 50o + N1 = 180o
⇒ N1 = 180o - 50o
⇒ N1 = 130o
N1 = N3 = 130o (2 góc đối đỉnh)
N1 = M1 = 130o (2 góc đồng vị)
M1 = M3 = 130o (2 góc đối đỉnh)
M3 + N2 = 180o (2 góc trong cùng phía)
M4 + N1 = 180o (2 góc trong cùng phía)
a: So le trong: góc A4 và góc B2, góc A3 và góc B1
Đồng vị: góc A1 và góc B1; góc B2 và góc A2; góc A3 và góc B3; góc A4 và góc B4
Trong cùng phía: góc A4 và góc B1; góc A3 và góc B2
b: góc A4=góc A2=60 độ
góc A1=góc A3=180-60=120 độ
góc B3=góc B2=60 độ
góc B1=góc B4=180-60=120 độ
c: góc A2=góc B2
mà hai góc này đồng vị
nên Ax//By
a) cặp góc đới đỉnh là: AOD và BOC , AOB và DOC
b) góc kề bù với aob: AOD,BOC
c)cặp góc slt: ABD và BDC, BAC và ACD
d)cặp góc tcp: BAD và CDA,ABC và DCB,ADC và BCD,DAB và CBA;AOD và DAO,ADO và AOD,ODA và OAD;...(xét tiếp các tam giác khác ra các góp trong cùng phía)
\(a,\)So le trong: \(E_1 và F_2;E_2 và F_1\)
Đồng vị: \(E_1 và F_4;E_2 và F_3;E_3 và F_2;E_4 và F_1\)
Trong cùng phía: \(E_1 và F_1;E_2 và F_2\)
\(b,\widehat{F_1}=\widehat{F_3}=120^0\left(đối.đỉnh\right)\\ \widehat{F_2}+\widehat{F_3}=180^0\left(kề.bù\right)\Rightarrow\widehat{F_2}=180^0-120^0=60^0\\ \widehat{F_2}=\widehat{F_4}-60^0\left(đối.đỉnh\right)\)
\(c,C_1:\widehat{F_2}=\widehat{E_3}\left(=60^0\right)\)
Mà 2 góc này ở vị trí đồng vị nên \(a//b\)
\(C_2:\)\(\widehat{E_1}=\widehat{E_3}=60^0\left(đối.đỉnh\right)\Rightarrow\widehat{E_1}=\widehat{F_2}\left(=60^0\right)\)
Mà 2 góc này ở vị trí so le trong nên \(a//b\)
a. Các cặp góc:
- So le trong là: \(\widehat{E_1}\) và \(\widehat{F_2};\widehat{E_2}\) và \(\widehat{F_1}\)
- Đồng vị là: \(\widehat{E_4},\widehat{F_1};\widehat{E_3},\widehat{F_2};\widehat{E_2},\widehat{F_3};\widehat{E_1},\widehat{F_4}\)
- Trong cùng phía là: \(\widehat{E_1},\widehat{F_1};\widehat{E_2},\widehat{F_2}\)
b. Ta có: \(\widehat{F_1}=\widehat{F_3}=120^o\) (đối đỉnh)
\(\widehat{F_2}=180^o-\widehat{F_1}=180^o-120^o=60^o\)
\(\widehat{F_3}=120^o\)
\(\widehat{F_4}=\widehat{F_2}=60^o\) (đối đỉnh)
c.
C1: Ta có: \(\widehat{E_1}=\widehat{E_3}=60^o\) (đối đỉnh)
Ta thấy: \(\widehat{E_1}=\widehat{F_2}=60^o\)
=> a//b (so le trong)
C2: Ta có: \(\widehat{E_2}=180^o-\widehat{E_3}=180^o-60^o=120^o\)
Ta thấy: \(\widehat{E_2}=\widehat{F_1}=120^o\)
=> a//b (so le trong)