K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2015

tick cho mình đi rồi mình gửi bài cho còn không tick thì mình không bày đâu nhé

25 tháng 10 2021

5 năm rồi anh ấy vẫn chưa có câu trả lời

11 tháng 10 2020

Ta có M, N lần lượt là trung điểm của AB, AD nên MN là đường trung bình của ∆ABD => MN // BD

Mà AC⊥BD nên MN⊥AC hay LA⊥MN (1)

N, L lần lượt là trung điểm của AD, AC nên NL là đường trung bình của ∆ADC => NL // DC

Mà MH⊥DC nên NL⊥MH  (2)

Từ (1) và (2) suy ra H là trực tâm của tam giác MNL (đpcm)

28 tháng 1 2016

 Gọi H là chân đường vuông góc hạ từ M xuống tia phân giác ^BAC. Tam giác ADE có AH vừa là phân giác vùa là đường cao nên cân tại A. 
Qua B vẽ BF//CE (F thuộc DE) => tam giác BDF cân tại B => BD = BF (1) 
Mặt khác xét 2 tam giác BMF và CME có : BM = CM; ^BMF = ^CME ( đối đỉnh); ^MBF = ^MCE ( so le trong) => tam giác BMF = tg CME => BF = CE (2) 
Từ (1) và (2) => đpcm

28 tháng 1 2016

mình mới học lớp 6

7 tháng 12 2021

B) Ta có tam giác EBF cân tại B nên \(\widehat{B}+2\widehat{E}=180\)

\(\widehat{EBF}+\widehat{ACD}=180\) suy ra \(\widehat{ACD}=2\widehat{E}\)

mặt khác \(\widehat{ACD}=2\widehat{PCQ}\) nên \(\widehat{E}=\widehat{F}=\widehat{PCQ}\)

tam giác EPC đồng dạng  với tam giácPCQ

tam giác PCQ đồng dạng tam giác ECQ

suy ra  tam giác EPC đồng dạng  tam giác FCQ

\(\Rightarrow\) PE.QF=CE.CF=:4

\(\Rightarrow2\sqrt{PE.QF}EF\)đpcm