cho các chữ số tự nhiên từ 1đến 550 . Chữ số 5 xuất hiện bao nhiêu lần? Ai vừa giải thích vừa cho em đáp án với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số số thỏa mãn: \(\dfrac{9!}{5!}=3024\) số
(Đây là loại hoán vị lặp)
Số tự nhiên có 8 chữ số \(\overline{abcdefgh}\).
TH1: \(h=0\)
\(\overline{abcdefg}\) có \(\dfrac{7!}{2!.3!}=420\) cách lập.
\(\Rightarrow\) Lập được 420 số thỏa mãn yêu cầu.
TH2: \(h=5\)
\(\overline{abcdefg}\) có \(\dfrac{7!}{2!.3!}-\dfrac{6!}{2!.3!}=360\) cách lập.
\(\Rightarrow\) Lập được 360 số thỏa mãn yêu cầu.
Vậy lập được \(420+360=780\) số tự nhiên thỏa mãn yêu cầu bài toán.
Bạn có thể giải thích phần công thức được không vậy. Mình hiểu hơi chậm. Bạn thông cảm. Mình cảm ơn nhiều.
Chữ số 2 xuất hiện 3 lần.
Coi chữ số đc lập nên từ 6 chữ số tập \(A=\left\{1,2,2,2,3,4\right\}\)
Gọi số cần lập là \(\overline{abcdef}\in A\)
Chọn a có 6 cách chọn.
Xếp 5 số của \(A\backslash\left\{a\right\}\) vào 5 vị trí còn lại có 5! cách xếp.
Mà chữ số 2 lặp lại 3 lần\(\Rightarrow\) có 3! cách xếp.
Vậy số các số cần lập:
\(\dfrac{6\cdot5!}{3!}=120\left(số\right)\)
Số chia hết cho 9 mà mỗi số xuất hiện 1 lần.
Ta có: 1+2+3+4+5+6=21
Vậy các số chia hết cho 9 sẽ có tổng các chữ số là 9 hoặc 18
Số có 2 chữ số: 36; 63; 45; 54 => 4 số
Số có 3 chữ số: 126; 621; 162; 612; 216; 261; 234; 243; 342; 324; 432; 423; 135; 153; 351; 315; 513; 531 => 18 số
Số có 4 chữ số: 3456; 3465; 3546; 3564; 3654; 3645 => 6 số x 4 cách đổi = 24 số
Số có 5 chữ số: 12456; 12465; 12564; 12546; 12645; 12654 => Số lượng: 6 x 4 x 5 = 120 số
Tổng thoả mãn: 4+18+24+120= 166(số)