Cho tam giác ABC có điểm M thuộc cạnh BC sao cho MB=2MC. Chứng minh rằng 3AM<AB+2AC
Giúp mik với mik cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi E là trung điểm DC
Xét tam giác BDC có:
E là trung điểm DC
M là trung điểm BC
=> EM là đường trung bình
=> EM//BD
=> EM//ID
Ta có: \(AD=\dfrac{1}{2}DC\)
Mà \(DE=\dfrac{1}{2}DC\)
\(\Rightarrow AD=DE=\dfrac{1}{2}AE\)=> D là trung điểm AE
Xét tam giác AME có:
D là trung điểm AE
ID//ME
=> I là trung điểm AM
=> AI=IM
Giải:
a) Xét \(\Delta BAM,\Delta NCM\) có:
\(AM=MC\left(=\frac{1}{2}AC\right)\)
\(\widehat{M_2}=\widehat{M_4}\) ( đối đỉnh )
\(BM=MC\left(gt\right)\)
\(\Rightarrow\Delta BAM=\Delta NCM\left(c-g-c\right)\)
\(\Rightarrow CN=AB\) ( cạnh t/ứng )
\(\Rightarrow\widehat{BAM}=\widehat{NCM}\) ( cạnh t/ứng )
Mà \(\widehat{BAM}=90^o\Rightarrow\widehat{NCM}=90^o\) hay \(CN\perp AC\)
b) Xét \(\Delta AMN=\Delta CMB\) có:
\(AM=MC\left(=\frac{1}{2}AC\right)\)
\(\widehat{M_1}=\widehat{M_3}\) ( đối đỉnh )
\(BM=MN\left(gt\right)\)
\(\Rightarrow\Delta AMN=\Delta CMB\left(c-g-c\right)\)
\(\Rightarrow\widehat{BCA}=\widehat{CAN}\) ( cạnh t/ứng )
Mà 2 góc trên nằm ở vị trí so le trong nên AN // BC
Vậy...
a: Xét ΔMBA và ΔMDC có
MB=MD
\(\widehat{BMA}=\widehat{DMC}\)
MA=MC
Do đó: ΔMBA=ΔMDC
b: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó:ABCD là hình bình hành
Suy ra: AB//CD
c: Ta có ΔABC vuông tại B
mà BM là đường trung tuyến
nên AC=2BM