Cho a,b,c là độ dài 3 cạnh của một tam giác
1/a+b+c +1/b+c+a +1/b+c+a>_1/a+1/b+1/c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{1}{x}\)+ \(\frac{1}{y}\)\(\ge\)\(\frac{4}{xy}\)( với x,y dương)
Thật vậy: \(\frac{1}{x}\)+\(\frac{1}{y}\)\(\ge\frac{4}{x+y}\)
\(\Leftrightarrow\frac{y+x}{xy}\ge\frac{4}{x+y}\)
\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow x^2+2xy+y^2\ge4xy\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\) luôn đúng \(\forall\)x,y
Áp dụng bất đẳng thức trên ta được:
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)(Vì a,b,c là 3 cạnh \(\Delta\)nên a+b-c > 0 và b+c-a > 0 bđt \(\Delta\))
Tương tự có: \(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{2}{a}\)
\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{2}{c}\)
Cộng từng vế 3 bđt trên ta được:
2(\(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\)\(\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)(ĐFCM)
CHÚC BẠN HỌC TỐT!
Cái phần cuối mình up lên nhưng không được chắc là do giới hạn chữ
Phần cuối bạn làm như thế này nhé:
C/m tương tự:\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{2}{a}\)
\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{2}{c}\)
Cộng từng vế của 3 bđt trên ta được \(2\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)(ĐFCM)
CHÚC BẠN HỌC TỐT!
Xin lỗi nhé, nãy đang vội thấy 3 p/s nghĩ luôn ra mà ko kịp soát
Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) ta có:
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)
\(\frac{1}{b+c-a}+\frac{1}{a+c-b}\ge\frac{4}{b+c-a+a+c-b}=\frac{4}{2c}=\frac{2}{c}\)
\(\frac{1}{a+b-c}+\frac{1}{a+c-b}\ge\frac{4}{a+b-c+a+c-b}=\frac{4}{2a}=\frac{2}{a}\)
Cộng theo vế 3 BĐT ta có:
\(2VT\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}=2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=2VP\Rightarrow VT\ge VP\)
Đẳng thức xảy ra khi \(a=b=c\)
Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) ta có:
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{a+c-b}\)
\(\ge\frac{9}{a+b-c+b+c-a+a+c-b}=\frac{9}{a+b+c}\left(1\right)\)
Lại có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\left(2\right)\)
Từ (1) và (2) ta có ĐPCM
đặt: x = b + c - a > 0
y = a + c - b > 0
z = a + b - c > 0
\(\Rightarrow a=\frac{\left(y+z\right)}{2}\)
\(b=\frac{\left(x+z\right)}{2}\)
\(c=\frac{\left(x+y\right)}{2}\)
\(A=\frac{a}{\left(b+c-a\right)}+\frac{b}{\left(a+c-b\right)}+\frac{c}{\left(a+b-c\right)}\)
\(A=\frac{\left(y+z\right)}{\left(2x\right)}+\frac{\left(x+z\right)}{\left(2y\right)}+\frac{\left(x+y\right)}{\left(2z\right)}\)
\(A=\frac{1}{2}.\left(\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}+\frac{y}{z}+\frac{z}{y}\right)\)
áp dụng BĐT Cauchy-Schwarz, ta có:
\(\frac{x}{y}+\frac{y}{x}\ge2\)
\(\frac{x}{z}+\frac{z}{x}\ge2\)
\(\frac{y}{z}+\frac{z}{y}\ge2\)
Cộng các BĐT trên, ta được:
\(\left(\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}+\frac{z}{y}\right)\ge6\)
\(\Rightarrow A\ge\frac{1}{2}.3=6\)(đpcm).
Đặt \(A=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=\left(a+b+c\right).\frac{1}{a}+\left(a+b+c\right).\frac{1}{b}+\left(a+b+c\right).\frac{1}{c}\)
\(=\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\)
\(=\frac{a}{a}+\frac{b+c}{a}+\frac{b}{b}+\frac{a+c}{b}+\frac{c}{c}+\frac{a+b}{c}\)
\(=1+\frac{b+c}{a}+1+\frac{a+c}{b}+1+\frac{a+b}{c}\)
\(=3+\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\)
Ta có: trong 1 tam giác thì tổng độ dài 2 cạnh bao giờ cũng lớn hơn cạnh còn lại ( bất đẳng thức tam giác )
\(\Rightarrow\hept{\begin{cases}b+c>a\\a+c>b\\a+b>c\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\frac{b+c}{a}>1\\\frac{a+c}{b}>1\\\frac{a+b}{c}>1\end{cases}}\)
\(\Rightarrow A>3+1+1+1\)
\(\Rightarrow A>6\left(đpcm\right)\)
Bài làm:
a) Áp dụng bất đẳng thức Cauchy Schwars ta có:
\(\frac{1}{a}+\frac{1}{b}\ge\frac{\left(1+1\right)^2}{a+b}=\frac{4}{a+b}\)
Dấu "=" xảy ra khi: \(a=b\)
b) Tương tự phần a ta chứng minh được:
\(\frac{1}{b}+\frac{1}{c}\ge\frac{4}{b+c}\) ; \(\frac{1}{c}+\frac{1}{a}\ge\frac{4}{c+a}\)
Cộng vế 3 BĐT trên lại ta được:
\(2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge4\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)
=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge2\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)
Dấu "=" xảy ra khi: a=b=c
c) Ta có: \(\frac{1}{p-a}+\frac{1}{p-b}=\frac{1}{\frac{a+b+c}{2}-a}+\frac{1}{\frac{a+b+c}{2}-b}\)
\(=\frac{1}{\frac{b+c-a}{2}}+\frac{1}{\frac{c+a-b}{2}}=\frac{2}{b+c-a}+\frac{2}{c+a-b}\)
\(=2\left(\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\ge2\cdot\frac{4}{2c}=\frac{4}{c}\) (Cauchy Schwars)
Tương tự ta CM được:
\(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{a}\) ; \(\frac{1}{p-c}+\frac{1}{p-a}\ge\frac{4}{b}\)
Cộng vế 3 BĐT vừa CM lại ta được:
\(2\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\ge4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
=> \(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Dấu "=" xảy ra khi: a=b=c
a,b,c là độ dài ba cạnh của một tam giác
=> a,b,c > 0
a) \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
<=> \(\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}\ge0\)
<=> \(\frac{b\left(a+b\right)}{ab\left(a+b\right)}+\frac{a\left(a+b\right)}{ab\left(a+b\right)}-\frac{4ab}{ab\left(a+b\right)}\ge0\)
<=> \(\frac{ab+b^2}{ab\left(a+b\right)}+\frac{a^2+ab}{ab\left(a+b\right)}-\frac{4ab}{ab\left(a+b\right)}\ge0\)
<=> \(\frac{ab+b^2+a^2+ab-4ab}{ab\left(a+b\right)}\ge0\)
<=> \(\frac{a^2-2ab+b^2}{ab\left(a+b\right)}\ge0\)
<=> \(\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)
a, b > 0 => \(\hept{\begin{cases}\left(a-b\right)^2\ge0\\ab>0\\a+b>0\end{cases}}\forall a,b\)
Vậy bđt được chứng minh
Đẳng thức xảy ra \(\left(a-b\right)^2=0\Leftrightarrow a=b\)( do ab(a+b) > 0 )
b) CMTT ta có : \(\frac{1}{b}+\frac{1}{c}\ge\frac{4}{b+c}\); \(\frac{1}{c}+\frac{1}{a}\ge\frac{4}{c+a}\)
Cộng theo vế của bđt ta được :
\(2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge4\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)
<=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge2\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)( đpcm )
Đẳng thức xảy ra <=> a = b = c
Còn ý c) thì mình chưa làm được vì chưa nghiên cứu sâu về bđt
Tham khảo bài bạn @godatakeshidang nhé ^^