K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2018

Ta có : \(\frac{1}{x}\)\(\frac{1}{y}\)\(\ge\)\(\frac{4}{xy}\)( với x,y dương)

Thật vậy: \(\frac{1}{x}\)+\(\frac{1}{y}\)\(\ge\frac{4}{x+y}\)

\(\Leftrightarrow\frac{y+x}{xy}\ge\frac{4}{x+y}\)

\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow x^2+2xy+y^2\ge4xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\) luôn đúng \(\forall\)x,y

Áp dụng bất đẳng thức trên ta được:

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)(Vì a,b,c là 3 cạnh \(\Delta\)nên a+b-c > 0 và b+c-a > 0                                                                                                                                                                                                               bđt \(\Delta\))

Tương tự có: \(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{2}{a}\)

                       \(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{2}{c}\)

Cộng từng vế 3 bđt trên ta được:

2(\(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\)\(\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)(ĐFCM)

CHÚC BẠN HỌC TỐT!

30 tháng 3 2018

Cái phần cuối mình up lên nhưng không được chắc là do giới hạn chữ

Phần cuối bạn làm như thế này nhé:

C/m tương tự:\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{2}{a}\)

                         \(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{2}{c}\)

Cộng từng vế của 3 bđt trên ta được \(2\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

                                                        \(\Rightarrow\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)(ĐFCM)

                

CHÚC BẠN HỌC TỐT!

21 tháng 3 2017

Xin lỗi nhé, nãy đang vội thấy 3 p/s nghĩ luôn ra mà ko kịp soát

Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) ta có: 

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)

\(\frac{1}{b+c-a}+\frac{1}{a+c-b}\ge\frac{4}{b+c-a+a+c-b}=\frac{4}{2c}=\frac{2}{c}\)

\(\frac{1}{a+b-c}+\frac{1}{a+c-b}\ge\frac{4}{a+b-c+a+c-b}=\frac{4}{2a}=\frac{2}{a}\)

Cộng theo vế 3 BĐT ta có: 

\(2VT\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}=2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=2VP\Rightarrow VT\ge VP\)

Đẳng thức xảy ra khi \(a=b=c\)

21 tháng 3 2017

Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) ta có: 

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{a+c-b}\)

\(\ge\frac{9}{a+b-c+b+c-a+a+c-b}=\frac{9}{a+b+c}\left(1\right)\)

Lại có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\left(2\right)\)

Từ (1) và (2) ta  có ĐPCM

26 tháng 3 2018

đặt: x = b + c - a > 0

       y = a + c - b > 0

       z = a + b - c > 0

\(\Rightarrow a=\frac{\left(y+z\right)}{2}\)

    \(b=\frac{\left(x+z\right)}{2}\)

   \(c=\frac{\left(x+y\right)}{2}\)

\(A=\frac{a}{\left(b+c-a\right)}+\frac{b}{\left(a+c-b\right)}+\frac{c}{\left(a+b-c\right)}\)

\(A=\frac{\left(y+z\right)}{\left(2x\right)}+\frac{\left(x+z\right)}{\left(2y\right)}+\frac{\left(x+y\right)}{\left(2z\right)}\)

\(A=\frac{1}{2}.\left(\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}+\frac{y}{z}+\frac{z}{y}\right)\)

áp dụng BĐT Cauchy-Schwarz, ta có:

\(\frac{x}{y}+\frac{y}{x}\ge2\)

\(\frac{x}{z}+\frac{z}{x}\ge2\)

\(\frac{y}{z}+\frac{z}{y}\ge2\)

Cộng các BĐT trên, ta được:

\(\left(\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}+\frac{z}{y}\right)\ge6\)

\(\Rightarrow A\ge\frac{1}{2}.3=6\)(đpcm).

27 tháng 3 2019

Vì sao a=\(\frac{y+z}{2}\)

21 tháng 4 2019

Đặt \(A=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

           \(=\left(a+b+c\right).\frac{1}{a}+\left(a+b+c\right).\frac{1}{b}+\left(a+b+c\right).\frac{1}{c}\)

           \(=\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\)

            \(=\frac{a}{a}+\frac{b+c}{a}+\frac{b}{b}+\frac{a+c}{b}+\frac{c}{c}+\frac{a+b}{c}\)

           \(=1+\frac{b+c}{a}+1+\frac{a+c}{b}+1+\frac{a+b}{c}\)

         \(=3+\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\)

Ta có: trong 1 tam giác thì tổng độ dài 2 cạnh bao giờ cũng lớn hơn cạnh còn lại ( bất đẳng thức tam giác )

\(\Rightarrow\hept{\begin{cases}b+c>a\\a+c>b\\a+b>c\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\frac{b+c}{a}>1\\\frac{a+c}{b}>1\\\frac{a+b}{c}>1\end{cases}}\)

\(\Rightarrow A>3+1+1+1\)

\(\Rightarrow A>6\left(đpcm\right)\)

29 tháng 8 2020

Bài làm:

a) Áp dụng bất đẳng thức Cauchy Schwars ta có:

\(\frac{1}{a}+\frac{1}{b}\ge\frac{\left(1+1\right)^2}{a+b}=\frac{4}{a+b}\)

Dấu "=" xảy ra khi: \(a=b\)

b) Tương tự phần a ta chứng minh được:

\(\frac{1}{b}+\frac{1}{c}\ge\frac{4}{b+c}\) ; \(\frac{1}{c}+\frac{1}{a}\ge\frac{4}{c+a}\)

Cộng vế 3 BĐT trên lại ta được:

\(2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge4\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)

=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge2\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)

Dấu "=" xảy ra khi: a=b=c

c) Ta có: \(\frac{1}{p-a}+\frac{1}{p-b}=\frac{1}{\frac{a+b+c}{2}-a}+\frac{1}{\frac{a+b+c}{2}-b}\)

\(=\frac{1}{\frac{b+c-a}{2}}+\frac{1}{\frac{c+a-b}{2}}=\frac{2}{b+c-a}+\frac{2}{c+a-b}\)

\(=2\left(\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\ge2\cdot\frac{4}{2c}=\frac{4}{c}\) (Cauchy Schwars)

Tương tự ta CM được:

\(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{a}\) ; \(\frac{1}{p-c}+\frac{1}{p-a}\ge\frac{4}{b}\)

Cộng vế 3 BĐT vừa CM lại ta được:

\(2\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\ge4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

=> \(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Dấu "="  xảy ra khi: a=b=c

29 tháng 8 2020

a,b,c là độ dài ba cạnh của một tam giác

=> a,b,c > 0

a) \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

<=> \(\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}\ge0\)

<=> \(\frac{b\left(a+b\right)}{ab\left(a+b\right)}+\frac{a\left(a+b\right)}{ab\left(a+b\right)}-\frac{4ab}{ab\left(a+b\right)}\ge0\)

<=> \(\frac{ab+b^2}{ab\left(a+b\right)}+\frac{a^2+ab}{ab\left(a+b\right)}-\frac{4ab}{ab\left(a+b\right)}\ge0\)

<=> \(\frac{ab+b^2+a^2+ab-4ab}{ab\left(a+b\right)}\ge0\)

<=> \(\frac{a^2-2ab+b^2}{ab\left(a+b\right)}\ge0\)

<=> \(\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)

a, b > 0 => \(\hept{\begin{cases}\left(a-b\right)^2\ge0\\ab>0\\a+b>0\end{cases}}\forall a,b\)

Vậy bđt được chứng minh

Đẳng thức xảy ra \(\left(a-b\right)^2=0\Leftrightarrow a=b\)( do ab(a+b) > 0 )

b) CMTT ta có : \(\frac{1}{b}+\frac{1}{c}\ge\frac{4}{b+c}\)\(\frac{1}{c}+\frac{1}{a}\ge\frac{4}{c+a}\)

Cộng theo vế của bđt ta được :

\(2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge4\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)

<=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge2\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)( đpcm )

Đẳng thức xảy ra <=> a = b = c

Còn ý c) thì mình chưa làm được vì chưa nghiên cứu sâu về bđt

Tham khảo bài bạn @godatakeshidang nhé ^^