Biết độ dài 3 cạnh a,b,c của một tam giác tỉ lệ với 4;6;8. Độ dài 3 đường cao ha; hb;hc của tam giác đó lần lượt tỉ lệ với 3 số nào???
Cảm ơn các bạn!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\) Gọi độ dài 3 cạnh là a,b,c(cm;0<a<b<c<120)
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{120}{12}=10\\ \Rightarrow \begin{cases} a=10.3=30\\ b=10.4=40\\ c=10.5=50 \end{cases} \)
Vậy ...
\(b,\) Gọi độ dài 3 cạnh là a,b,c(cm;0<a<b<c)
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{c-a}{7-3}=\dfrac{80}{4}=20\\ \Rightarrow \begin{cases} a=20.3=60\\ b=20.5=100\\ c=20.7=140 \end{cases}\\ \Rightarrow P=a+b+c=300(cm)\)
a. ta có
\(\hept{\begin{cases}2a=3b=4c\\a+b-c=21\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{a}{\frac{1}{2}}=\frac{b}{\frac{1}{3}}=\frac{c}{\frac{1}{4}}\\a+b-c=21\end{cases}}}\) áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{\frac{1}{2}}=\frac{b}{\frac{1}{3}}=\frac{c}{\frac{1}{4}}=\frac{a+b-c}{\frac{1}{2}+\frac{1}{3}-\frac{1}{4}}=\frac{21}{\frac{7}{12}}=36\)\(\Rightarrow\hept{\begin{cases}a=36:2=18\\b=36:3=12\\c=36:4=9\end{cases}}\)
b. ta có : \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{4}=\frac{z}{5}\\x+z-y=20\end{cases}}\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{x+z-y}{2+5-4}=\frac{20}{3}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{40}{3}\\y=\frac{80}{3}\\z=\frac{100}{3}\end{cases}}\)
Gọi độ dài của các cạnh tam giác là a, b, c tỉ lệ với 3, 4, 5
Theo bài ra ta có:
\(a:b:c=3:4:5\) và c - a = 6
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{c-a}{5-3}=\dfrac{6}{2}=3\)
Do đó: \(\Rightarrow\left\{{}\begin{matrix}3.3=9\\4.3=12\\5.3=15\end{matrix}\right.\)
Vậy:...
Gọi độ dài các cạch của tam giác là a,b,c với các cạnh là 3,4,5
Theo đề ta có:
a:b:c=3:4:5 và c-a =6
Áp dụng tính chất của dãy số bangừ nhau ta có:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{c-a}{5-3}=\dfrac{6}{2}=3\)
Vậy ta có như sau:
\(\dfrac{a}{3}=3\Rightarrow a=9\)
\(\dfrac{b}{4}=3\Rightarrow b=12\)
\(\dfrac{c}{5}=3\Rightarrow c=15\)
1. Áp dụng TCDTSBN:
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{a+b}{3+5}=\dfrac{32}{8}=4\)
\(\Rightarrow\left\{{}\begin{matrix}a=12\\b=20\end{matrix}\right.\)
1. Áp dụng t/c dtsbn ta có:
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{a+b}{3+5}=\dfrac{32}{8}=4\)
\(\dfrac{a}{3}=4\Rightarrow a=12\\ \dfrac{b}{5}=4\Rightarrow b=20\)
2. gọi độ dài 3 cạnh tam giác lần lượt là a,b,c
Ta có: \(\left\{{}\begin{matrix}\dfrac{a}{5}=\dfrac{b}{7}=\dfrac{c}{9}\\a+b+c=630\left(m\right)\end{matrix}\right.\)
Áp dụng t/c dtsbn ta có:
\(\dfrac{a}{5}=\dfrac{b}{7}=\dfrac{c}{9}=\dfrac{a+b+c}{5+7+9}=\dfrac{630}{21}=30\left(m\right)\)
\(\dfrac{a}{5}=30\Rightarrow a=150\left(m\right)\\ \dfrac{b}{7}=30\Rightarrow b=210\left(m\right)\\ \dfrac{c}{9}=30\Rightarrow c=270\left(m\right)\)
Gọi độ dài mỗi cạnh của tam giác lần lượt là x(cm),y(cm),z(cm) . Theo đề bài ta có :
\(x:y:z=3:4:6\)hay \(\frac{x}{3}=\frac{y}{4}=\frac{z}{6}\)và x + y + z = 65
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{6}=\frac{x+y+z}{3+4+6}=\frac{65}{13}=5\)
=> \(\hept{\begin{cases}\frac{x}{3}=5\\\frac{y}{4}=5\\\frac{z}{6}=5\end{cases}}\Rightarrow\hept{\begin{cases}x=15\\y=20\\z=30\end{cases}}\)
gọi độ dài mỗi cạnh lần lượt là A, B, C
Ta có: \(\frac{A}{3}=\frac{B}{4}=\frac{C}{6}=\frac{A+B+C}{3+4+6}=\frac{65}{13}=5\)
Độ dài mỗi cạnh là:
C1:\(\frac{A}{3}=5\Rightarrow A=5\cdot3=15cm\)
C2:\(\frac{B}{4}=5\Rightarrow B=5\cdot4=20cm\)
C3:\(\frac{C}{6}=5\Rightarrow C=5\cdot6=30cm\)
\(\Rightarrow\)Độ dài lần lượt của ba cạnh của hình tam giác là 15cm, 20cm, 30cm