Tìm n nhỏ nhất sao cho (2n + 1) chia hết cho (n + 2)
Cần lời giải đầy đủ, mình sẽ tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có \(4n+13\) chia hết cho \(2n+1\)
=> 4n + 2 +11 chia hết chi 2n+1
=> 2.(2n+1) +11 chia hết cho 2n+1
ta thấy 2.(2n+1) chia hết cho 2n+1
=> 11 chia hết cho 2n+1
=> 2n+1 \(\in\)Ư( 11 ) ={ 1, -1, 11, -11}
+) 2n+1 = 1 => 2n= 0 => n =0
+) 2n+1 = -1 => 2n =-2 => n=-1
+) 2n+1 =11 => 2n = 10 => n=5
+) 2n+1 = -11 => 2n = -12 => n = -6
vậy n \(\in\){ 0,-1 , 5, -6}
Để thoả mãn số a chia 2 dư 1, chia 5 dư 1, chia 7 dư 1 thì a là 2 x 5 x 7 + 1 = 71
(Giải thích: (phần này k ghi nhé) nếu một số chia hết cho vài số nào đó và số đó cần là số bé nhất => số đó chính là tích của các số là ước của nó)
Mà số này chia hết cho 9 nên số a tối thiểu là 71 x 9 = 639
Đáp số: 639
n(n+1)(2n+1) = n(n+1)(n+2+n-1)=n(n+1)(n+2)+(n-1)(n+1)n
ba số liên tiếp chia hết cho 3
tick minh nha
a)20 chia hết cho x-4
=>x-4 thuộc U(20)
U(20)={1;2;4;5;10;20}
=>x-4 thuộc {1;2;4;5;10;20}
=>x thuộc {5;6;8;9;14;24}
b)16 chia hết cho x+1
=>x+1 thuộc U(16)
U(16)={1;2;4;8;16}
=>x+1 thuộc {1;2;4;8;16}
=>x thuộc {0;1;3;7;15}
c)75 chia hết cho 2x+1
=>2x+1 thuộc U(75)
U(75)={1;3;5;15;25;75}
=>2x+1 thuộc {1;3;5;15;25;75}
=>x thuộc {0;1;2;7;12;37}
d)38 chia hết cho 2x
=>2x thuộc U(38)
U(38)={1;2;19;38}
=>2x thuộc {1;2;19;38}
=>x thuộc {1;19}
ko hiểu thì ? đừng k sai nha!
Ta có :
n + 3 chia hết cho n + 1
n + 3 = ( n+1 ) + 2
Mà n + 1 chia hết cho n + 1
Để n + 3 chia hết cho n+1
thì 2 chia hết cho n + 1
=> n + 1 e Ư ( 2 )
Ư ( 2 ) = { 1 ; 2 }
n + 1 | 1 | 2 |
n | 1 - 1 = 0 | 2 - 1 = 1 |
Chọn | Chọn |
Vậy n e { 0 ; 1 }
tìm số nhỏ nhất chia hết cho 2, 3, 4, 5, 6, 7 rồi trừ 1 là ra.
đáp án là tự tìm, máy tính k phải để làm cảnh đâu
Ta có : 2n + 1 = 2(n + 2) - 3
Do n + 2 \(⋮\)n + 2 => 2(n + 2) \(⋮\)n + 2
Để 2n + 1 \(⋮\)n + 2 thì 3 \(⋮\)n + 2 => n + 2 \(\in\)Ư(3) = {1; 3; -1; -3}
Lập bảng :
Vì n nhỏ nhất nên n = -5
Vậy ...
thanks bn nhìu