Từ A ở ngoài (O) kẻ 2 tiếp tuyến AB, AC tới (O) (B và C là 2 tiếp điểm). Gọi CD là đường kính của (O).
a) Đoạn thẳng AD cắt đường tròn tại E. Tính DE.DA theo R của (O)
b) Đường vuông góc CD tại O cắt BD tại F. Tính SACOF theo R khi AB=\(R\sqrt{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu c.
Gọi K là trung điểm của BH
Chỉ ra K là trực tâm của tam giác BMI
Chứng minh MK//EI
Chứng minh M là trung điểm của BE (t.c đường trung bình)
a: Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
hay A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
=>OA⊥BC
Xét ΔOBA vuông tại B có BH là đường cao
nên \(OH\cdot OA=OB^2=R^2\)
b:Xét (O) có
ΔBCD nội tiếp
BD là đường kính
Do đó: ΔBCD vuông tại C
Suy ra: BC⊥CD
mà BC⊥AO
nên AO//CD
a: Xét tứ giác OBAC có
\(\widehat{OBA}+\widehat{OCA}=180^0\)
Do đó: OBAC là tứ giác nội tiếp
a: Xét ΔOBA và ΔOCA có
OB=OC
\(\widehat{BOA}=\widehat{COA}\)
OA chung
Do đó: ΔOBA=ΔOCA
Suy ra: \(\widehat{OBA}=\widehat{OCA}=90^0\)
hay AC là tiếp tuyến của (O)
b:
Xét (O) có
ΔBDC nội tiếp
BD là đường kính
Do đó: ΔBDC vuông tại C
Xét ΔOBA vuông tại B và ΔDCB vuông tại C có
\(\widehat{BOA}=\widehat{CDB}\)
Do đó: ΔOBA∼ΔDCB
Suy ra: \(\dfrac{OB}{DC}=\dfrac{OA}{BD}\)
hay \(DC\cdot OA=2\cdot R^2\)
a, Xét \(\Delta\)CED có: OE = OD = OC ( = R)
=> \(\Delta\)CED vuông tại E
=> \(CE\perp DA\)
Vì AC là tiếp tuyến
\(\Rightarrow AC\perp CO\)
Xét \(\Delta\)ACD vuông tại C có CE là đường cao
DE . DA = CD2 = 4R2
b) Áp dụng định lí Pytago trong tam giác ACD có :
AD=(R3√)2+R2−−−−−−−−√ =2R.
tanAOCˆ=AC/OA=3√ ⇒AOCˆ=60o⇒AOBˆ=120o
⇒BDCˆ=60o⇒ΔOBDđều
Xét tam giác vuông ODF có : OFDˆ=30o
Có BOFˆ=90o−BODˆ=30o
⇒OFDˆ=BOFˆ⇒ΔOBFcân tại B ⇒BO=BF=BD⇒B là trung điểm của DF.
⇒ED=2BD=2R.
Tam giác FCD cân tại F nên FD=FC=2R.
Vậy OA=FC=2R.
Ta có ΔOBD đều ⇒DBOˆ=60o
Lại có BOAˆ=AODˆ=60o⇒BOAˆ=DBOˆ=60o
Mà hai góc này ở vị trí so le trong ⇒OA//DF.
Do đó tứ giác ODFA là hình bình hành ⇒OD//AF⇒OC//AF.
Tứ giác OCAF có : OC // AF (cmt)
AC // OF (cùng vuông góc OC)
=> OCAF là hình bình hành, lại có OA = FC (cmt) => OCAF là hình chữ nhât.
⇒SOCAF=OC.AC=R.R3√ =R2√3