K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2019

Câu trả lời

a.Vì AB=AC(gt)=> góc ABC=góc ACB ( tam giác ABC vuông cân)
mặt khác BK=KC(trung điểm BC)
=> tam giác AKB=tam giác AKC (c.g.c)
b.Vì tam giác AKB=tam giác AKC (theo câu a)
=> góc AKB=góc AKC
Mà góc AKB+góc AKC=180°
=>góc AKB=góc AKC=90°=> AK vuông góc với BC
c.Vì EC vuông góc với BC
AK vuông góc với BC
=>EC//AK =>E//K

4 tháng 1 2019

phần a , có ab = ac , bk = kc , \(\widehat{b}\)=\(\widehat{c}\). phần b , có NC vuông vs BC , AK vuông BC [ tc tam giác vuông cân] suy ra chúng song song vì  cùng vuông vs BC , phần c có hai góc a bằng 90 độ , góc B bằng góc N do cùng phụ vs góc BCN , ac chung suy ra hai tam giác BCA  và ACN bằng nhau , suy ra CN =CB

6 tháng 1 2021

a) vì K là trung điểm của BC nên

BK=CK=BC/2 ( tính chất)

xét tam giác AKB và tam giác AKC có

AB=AC ( gt)

AK chung

BK=CK( cmt)

⇒tg AKB=tg AKC      (1)

b) từ (1) ⇒góc AKB= góc AKC ( 2 GÓC TƯƠNG ỨNG)

mà góc AKB+ góc AKC= 180 độ ( 2 góc kề bù)

⇒  góc AKB = góc AKC = 180 độ/2 = 90 độ

⇒ AK ⊥ BC 

Mik mới làm được tó đây thôi. chúc cậu hok giỏi nha!!!hihi

 

 

a) Xét ΔAKB và ΔAKC có 

AB=AC(gt)

KB=KC(K là trung điểm của BC)

AK chung

Do đó: ΔAKB=ΔAKC(c-c-c)

b) Ta có: ΔABC vuông cân tại A(gt)

mà AK là đường trung tuyến ứng với cạnh đáy BC(K là trung điểm của BC)

nên AK là đường cao ứng với cạnh BC(Định lí tam giác cân)

hay AK⊥BC(đpcm)

c) Ta có: CE⊥CB(gt)

AK⊥BC(cmt)

Do đó: AK//CE(Định lí 1 từ vuông góc tới song song)

d) Xét ΔCEB vuông tại C có \(\widehat{B}=45^0\)(Số đo của một góc nhọn trong ΔABC vuông cân tại A)

nên ΔCEB vuông cân tại C(Dấu hiệu nhận biết tam giác vuông cân)

hay CE=CB(đpcm)

a) ta có AB=AC\(\Rightarrow\Delta ABC\) là tam giác vuông cân tại A

\(\Rightarrow\widehat{ACB}=\widehat{ABC}\) hay \(\widehat{ACK}=\widehat{ABK}\)

Xét \(\Delta AKB\) và \(\Delta AKC\) có

\(AB=AC\) ( giả thiết )

\(\widehat{ABK}=\widehat{ACK}\) (chứng minh trên)

\(KB=KC\) ( Vì K là trung điểm của BC )

 \(\Rightarrow\Delta AKB=\Delta AKC\left(c-g-c\right)\)

vậy  \(\Delta AKB=\Delta AKC\)

b)  ta có \(\Delta AKB=\Delta AKC\) (chứng minh câu a)

\(\Rightarrow\widehat{AKB}=\widehat{AKC}\) (2 góc tương ứng)

mà \(\widehat{AKB}+\widehat{AKC}=180độ\) (2 góc kề bù)

\(\Rightarrow\widehat{AKB}=\widehat{AKC}=\dfrac{180độ}{2}=90độ\)

\(\Rightarrow AK\perp BC\)

vậy \(AK\perp BC\)

c) ta có \(AK\perp BC\) (chứng minh trên)

mà \(EC\perp BC\) ( giả thiết )

\(\Rightarrow EC//AK\)

vậy \(EC//AK\)

d) ta có \(\Delta ABC\)  là tam giác vuông cân

\(\Rightarrow\widehat{ACB}=\widehat{ABC}=45độ\)

ta có \(EC\perp BC\Rightarrow\widehat{BCE}=90độ\)

ta có \(\widehat{ACB}+\widehat{ACE}=\widehat{BCE}\)

          \(45độ+\widehat{ACE}=90độ\)

                       \(\widehat{ACE}=90độ-45độ=45độ\)

\(\Rightarrow\widehat{ACE}=\widehat{ACB}=45độ\)

ta có  \(\widehat{CAB}+\widehat{CAE}=180độ\) (2 góc kề bù)

\(\Rightarrow90độ+\widehat{CAE}=180độ\)

\(\Rightarrow\widehat{CEA}=180độ-90độ=90độ\)

\(\Rightarrow\widehat{CAE}=\widehat{CAB}=90độ\)

Xét \(\Delta ACE\) và \(\Delta CAB\) có 

\(\widehat{ACE}=\widehat{ACB}\)  (chứng minh trên)

CA là cạnh chung

\(\widehat{CAE}=\widehat{CAB}\) (chứng minh trên

\(\Rightarrow\Delta ACE=\Delta ACB\left(g-c-g\right)\)

\(\Rightarrow CE=CB\)

vậy \(CE=CB\)

 

 

 

23 tháng 12 2021

a: Xét ΔAKB và ΔAKC có

AK chung

KB=KC

AB=AC

Do đó: ΔAKB=ΔAKC

b: \(\widehat{AEC}=45^0\)

23 tháng 12 2021

a,Xét tam giác AKC và AKB có:
CA=BA (gt)
CK=BK(gt)
AK :cạnh chung
=>Tam giác AKC=AKB(c.c.c)
=>góc AKC =góc AKB ( vì hai góc tương ứng)
lại có :góc AKC+góc AKB =180 °(vì hai góc kề bù )
=>AKB=AKC =90 °=>AK ⊥ BC (đpcm)
b,Ta có EC ⊥ CB
AK ⊥ CB
=>CE//AK(quan hệ từ vuông góc đến song song)

21 tháng 12 2021

a: Xét ΔAKB và ΔAKC có

AB=AC

AK chung

BK=CK

Do đó: ΔAKB=ΔAKC

21 tháng 12 2021

a: Xét ΔAKB và ΔAKC có

AB=AC

AK chung

BK=CK

Do đó: ΔAKB=ΔAKC

a: Xét ΔAKB và ΔAKC có

AK chung

KB=KC

AB=AC

Do đó: ΔAKB=ΔAKC

11 tháng 12 2020

Bạn kiểm tra lại đề câu cuối!

AH
Akai Haruma
Giáo viên
17 tháng 12 2020

Lời giải:

a) Xét tam giác AKB và AKC có:

AB=AC (giả thiết)

KB=KC (do K là trung điểm của BC)

AK chung

Do đó: \(\triangle AKB=\triangle AKC(c.c.c)\) (đpcm)

\(\Rightarrow \widehat{AKB}=\widehat{AKC}\). Mà \(\widehat{AKB}+\widehat{AKC}=\widehat{BKC}=180^0\). Do đó:

\(\widehat{AKB}=\widehat{AKC}=90^0\Rightarrow AK\perp BC\) (đpcm)

b) 

Ta thấy: \(EC\perp BC; AK\perp BC\) (đã cm ở phần a)

\(\Rightarrow EC\parallel AK\) (đpcm)

c) Vì tam giác ABC là tam giác vuông cân tại A nên \(\widehat{B}=45^0\)

Tam giác CBE vuông tại C có \(\widehat{B}=45^0\) \(\Rightarrow \widehat{E}=180^0-(\widehat{C}+\widehat{B})=180^0-(90^0+45^0)=45^0\)

\(\Rightarrow \widehat{E}=\widehat{B}\) nên tam giác CBE cân tại C. Do đó CE=CB (đpcm)

AH
Akai Haruma
Giáo viên
17 tháng 12 2020

Hình vẽ: undefined