A=1/2+1/4+1/6+1/8 .......+1/n biết a là 49/50.Tìm n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy:
1/2 = 1/(1x2) = 1 - 1/2
1/6 = 1/(2x3) = 1/2 - 1/3
1/12 = 1/(3x4) = 1/3 - 1/4
........
Coi 1/n = 1/(ax(a+1)) = 1/a - 1/(a+1)
1 /2 + 1/6 + 1/12 + 1/20 + 1/30 +...+ 1/n = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+1/a - 1/(a+1) = 49/50
=1-1/2+1/2-1/3+1/3-......+1/a-1/a+1
Hay A = 1 - 1/(a+1) = 49/50
=> 1/(a+1) = 1 - 49/50
1/(a+1) = 1/50
Vậy (a + 1) = 50 mà n = a x (a+1) => n = (50-1) x 50 = 2450
Ta thấy:
1/2 = 1/(1x2) = 1 - 1/2
1/6 = 1/(2x3) = 1/2 - 1/3
1/12 = 1/(3x4) = 1/3 - 1/4
........
Coi 1/n = 1/(ax(a+1)) = 1/a - 1/(a+1)
1 /2 + 1/6 + 1/12 + 1/20 + 1/30 +...+ 1/n = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+1/a - 1/(a+1) = 49/50
=1-1/2+1/2-1/3+1/3-......+1/a-1/a+1
Hay A = 1 - 1/(a+1) = 49/50
=> 1/(a+1) = 1 - 49/50
1/(a+1) = 1/50
Vậy (a + 1) = 50 mà n = a x (a+1) => n = (50-1) x 50 = 2450
1/2 = 1/(1x2) = 1 - 1/2
1/6 = 1/(2x3) = 1/2 - 1/3
1/12 = 1/(3x4) = 1/3 - 1/4
........
1/n = 1/(ax(a+1)) = 1/a - 1/(a+1)
1 /2 + 1/6 + 1/12 + 1/20 + 1/30 +...+ 1/n = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+1/a - 1/(a+1) = 49/50
Hay A = 1 - 1/(a+1) = 49/50
=> 1/(a+1) = 1 - 49/50
1/(a+1) = 1/50
Vậy (a + 1) = 50 mà n = a x (a+1) => n = (50-1) x 50 = 2450
Bài này phân tích thành :
1/2 = 1/(1x2) = 1 - 1/2
1/6 = 1/(2x3) = 1/2 - 1/3
1/12 = 1/(3x4) = 1/3 - 1/4
........
1/n = 1/(ax(a+1)) = 1/a - 1/(a+1)
1 /2 + 1/6 + 1/12 + 1/20 + 1/30 +...+ 1/n = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+1/a - 1/(a+1) = 49/50
Hay A = 1 - 1/(a+1) = 49/50
=> 1/(a+1) = 1 - 49/50
1/(a+1) = 1/50
Vậy (a + 1) = 50 mà n = a x (a+1) => n = (50-1) x 50 = 2450
ta co ; 1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+..........+1/a-1/b=49/50 ước lượng 1/2; 1/3; 1/3; 1/4; 1/5; 1/6; .........; 1/a = 1-49/50=1/50; vậy n = 50
b) n + 3 \(⋮\) n - 1 <=> (n - 1) + 4 \(⋮\) n - 1
=> 4 \(⋮\) n - 1 (vì n - 1 \(⋮\) n - 1)
=> n - 1 ∈ Ư(4) = {±1; ±2; ±4}
Lập bảng giá trị:
n - 1 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 2 | 0 | 3 | -1 | 5 | -3 |
Vậy n ∈ {2; 0; 3; -1; 5; -3}
1/2 = 1/(1x2) = 1 - 1/2
1/6 = 1/(2x3) = 1/2 - 1/3
1/12 = 1/(3x4) = 1/3 - 1/4 ........ 1/n = 1/(nx(n+1)) = 1/n - 1/(n+1) 1 /2 + 1/6 + 1/12 + 1/20 + 1/30 +...+ 1/n = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+1/n - 1/(n+1) = 49/50 Hay A = 1 - 1/(n+1) = 49/50 => 1/(n+1) = 1 - 49/50 1/(n+1) = 1/50 Suy ra n+1=50 nên n=49
/2 = 1/(1x2) = 1 - 1/2
1/6 = 1/(2x3) = 1/2 - 1/3
1/12 = 1/(3x4) = 1/3 - 1/4
........
1/n = 1/(nx(n+1)) = 1/n - 1/(n+1)
1 /2 + 1/6 + 1/12 + 1/20 + 1/30 +...+ 1/n = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+1/n - 1/(n+1) = 49/50
Hay A = 1 - 1/(n+1) = 49/50
=> 1/(n+1) = 1 - 49/50
1/(n+1) = 1/50
Suy ra n+1=50 nên n=49