K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2019

Tính A

Bài 1: 

a: \(2A=2^{101}+2^{100}+...+2^2+2\)

\(\Leftrightarrow A=2^{100}-1\)

b: \(3B=3^{101}+3^{100}+...+3^2+3\)

\(\Leftrightarrow2B=3^{100}-1\)

hay \(B=\dfrac{3^{100}-1}{2}\)

c: \(4C=4^{101}+4^{100}+...+4^2+4\)

\(\Leftrightarrow3C=4^{101}-1\)

hay \(C=\dfrac{4^{101}-1}{3}\)

 

11 tháng 12 2015

\(A=2^{100}-2^{99}+2^{98}-2^{97}+....+2^2-2\)

\(2A=2^{101}-2^{100}+2^{99}-2^{98}+....+2^3-2^2\)

\(2A+A=2^{101}-2\)

\(A=\frac{2^{101}-2}{3}\)

b) tương tự

\(B=\frac{3^{101}+1}{4}\)

AH
Akai Haruma
Giáo viên
6 tháng 1 2023

Lời giải:
Xét tử số:

$101+100+99+98+...+3+2+1=(101+1).101:2=5151$

Xét mẫu số:

$101-100+99-98+...+3-2+1$

$=(101-100)+(99-98)+...+(3-2)+1=\underbrace{1+1+....+1}_{50} +1=1.50+1=51$

Vậy $A=\frac{5151}{51}=101$

17 tháng 9 2017

a)Ta thấy: 101+100+99+98+...+3+2+1 có(101-1+1=101 số) tổng của tử số của A là: (101+1).101:2=5151.

Mẫu số cũng có số hạng bằng số hạng tử số,có số cặp ở mẫu là:101:2=50(dư 1 số)(số 1).

Vậy tổng mẫu số của A là : (101-100).50+1=51.Vậy A=5151:51=101 

b) 3737.43-4343.37/2+4+6+...+100=101.37.43-101.43.37/2+4+6+...+100=101.(43.37-37.43)/2+4+6+...+100=0/2+4+6+...+100=0

31 tháng 12 2018

a)Ta thấy: 101+100+99+98+...+3+2+1 có(101-1+1=101 số) tổng của tử số của A là:

(101+1).101:2=5151.

Mẫu số cũng có số hạng bằng số hạng tử số,có số cặp ở mẫu là:

101:2=50(dư 1 số)(số 1).

Vậy tổng mẫu số của A là :

(101-100).50+1=51.Vậy A=5151:51=101 

b) 3737.43-4343.37/2+4+6+...+100=101.37.43-101.43.37/2+4+6+...+100=101.(43.37-37.43)/2+4+6+...+100=0/2+4+6+...+100=0

29 tháng 7 2023

\(A=\dfrac{101+100+99+98+...+3+2+1}{101-100+99-98+...+3-2+1}\\ A=\dfrac{\left[\left(101-1\right):1+1\right]\times\left(101+1\right):2}{1+1+...+1+1}\\ A=\dfrac{5151}{51}=101\\ B=\dfrac{3737.43}{4343.37}\\ B=\dfrac{37.101.43}{43.101.37}\\ B=1\)

Bạn ghi rõ lại đề đi bạn

9 tháng 7 2023

bạn ghi lại đc ko

11 tháng 1 2016

a,tính 2A + A

b,tính 3B+B

A=2^201-2/3

2 tháng 1 2017

A = 2^100 - 2^99 - 2^98 - 2^97 - ... - 2^2 - 2

A = 2^100-(2^99+2^98+2^97+...+2^2+2)

=> A = 2^100-B            (Ta đặt tổng: 2^99+2^98+2^97+...+2^2+2 là B)

B=2^99+2^98+2^97+...+2^2+2

=> 2B=2^100+2^99+2^98+...+2^3+2^2

=> 2B-B=(2^100+2^99+2^98+...+2^3+2^2)-(2^99+2^98+2^97+...+2^2+2)

=>   B   =           2^100-2

=> A-B=2^100-(2^100-2)

=> A-B=2^100-2^100+2

=> A-B=        2.

Vậy A=2

K mình nhá, mình giải chi tiết rồi đó nha !!!