K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2019

\(VT=\sum\dfrac{a}{a+b}< \sum\dfrac{a+c}{a+b+c}=2\)

\(VP=\sum\sqrt{\dfrac{a}{b+c}}=\sum\dfrac{a}{\sqrt{a}\cdot\sqrt{b+c}}>\sum\dfrac{2a}{a+b+c}=2\)

\(VP>2>VT\)

18 tháng 4 2023

Ta có \(\sqrt{a-1}+\dfrac{1}{\sqrt{a-1}}\) \(=\sqrt{a-1}+\dfrac{1}{4\sqrt{a-1}}+\dfrac{3}{4\sqrt{a-1}}\) \(\ge2\sqrt{\sqrt{a-1}.\dfrac{1}{4\sqrt{a-1}}}+\dfrac{3}{4\sqrt{a-1}}\) \(=1+\dfrac{3}{4\sqrt{a-1}}\).

Lập 2 BĐT tương tự rồi cộng vế theo vế, ta có

\(VT\ge3+\dfrac{3}{4}\left(\dfrac{1}{\sqrt{a-1}}+\dfrac{1}{\sqrt{b-1}}+\dfrac{1}{\sqrt{c-1}}\right)\)

\(\ge3+\dfrac{3}{4}.\dfrac{9}{\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}}\) 

\(\ge3+\dfrac{3}{4}.\dfrac{9}{\dfrac{3}{2}}\) \(=\dfrac{15}{2}\)

ĐTXR \(\Leftrightarrow a=b=c=\dfrac{5}{4}\). Ta có đpcm

18 tháng 4 2023

Có \(\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}+\dfrac{1}{\sqrt{a-1}}+\dfrac{1}{\sqrt{b-1}}+\dfrac{1}{\sqrt{c-1}}\ge\dfrac{15}{2}\)

\(\Leftrightarrow\dfrac{1}{\sqrt{a-1}}+\dfrac{1}{\sqrt{b-1}}+\dfrac{1}{\sqrt{c-1}}\ge\dfrac{15}{2}-\left(\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}\right)\ge6\) (1)

Ta chứng minh (1) đúng 

Áp dụng bất đẳng thức Schwarz : 

\(\dfrac{1}{\sqrt{a-1}}+\dfrac{1}{\sqrt{b-1}}+\dfrac{1}{\sqrt{c-1}}\ge\dfrac{\left(1+1+1\right)^2}{\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}}\ge\dfrac{9}{\dfrac{3}{2}}=6\)Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\sqrt{a-1}=\sqrt{b-1}=\sqrt{c-1}\\\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}=\dfrac{3}{2}\end{matrix}\right.\) 

\(\Leftrightarrow a=b=c=\dfrac{5}{4}\)(tm) 

 

NV
14 tháng 3 2022

\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{a+c}{a+b+c}+\dfrac{a+b}{a+b+c}+\dfrac{b+c}{a+b+c}=2\) (1)

\(VP=\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}+\dfrac{b}{\sqrt{b\left(c+a\right)}}+\dfrac{c}{\sqrt{c\left(a+b\right)}}\)

\(VP\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=2\) (2)

(1);(2) \(\Rightarrow VT< VP\)

24 tháng 9 2021

 Nguyễn Việt Lâm  Thầy giúp em được không ạ 

AH
Akai Haruma
Giáo viên
31 tháng 8 2017

Lời giải:

Đặt \(\left ( \sqrt{\frac{a}{b+c}},\sqrt{\frac{b}{a+c}},\sqrt{\frac{c}{a+b}} \right )=(x,y,z)\)

\(\Rightarrow \left\{\begin{matrix} x^2=\frac{a}{b+c}\\ y^2=\frac{b}{a+c}\\ z^2=\frac{c}{a+b}\end{matrix}\right.\Rightarrow \frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}=2\)

\(\Leftrightarrow (1-\frac{1}{x^2+1})+(1-\frac{1}{y^2+1})+(1-\frac{1}{z^2+1})=1\)

\(\Leftrightarrow \frac{x^2}{x^2+1}+\frac{y^2}{y^2+1}+\frac{z^2}{z^2+1}=1\)

BĐT cần chứng minh tương đương:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq 2(x+y+z)(\star)\)

Áp dụng BĐT Bunhiacopxky:

\(\left ( \frac{x^2}{x^2+1}+\frac{y^2}{y^2+1}+\frac{z^2}{z^2+1} \right )(x^2+1+y^2+1+z^2+1)\geq (x+y+z)^2\)

\(\Leftrightarrow x^2+1+y^2+1+z^2+1\geq (x+y+z)^2\)

\(\Leftrightarrow xy+yz+xz\leq \frac{3}{2}\)

Kết hợp với hệ quả của BĐT AM-GM :

\((xy+yz+xz)^2\geq 3xyz(x+y+z)\)

\(\Rightarrow xy+yz+xz\geq \frac{3xyz(x+y+z)}{xy+yz+xz}\geq \frac{3xyz(x+y+z)}{\frac{3}2{}}=2xyz(x+y+z)\)

\(\Leftrightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{2xyz(x+y+z)}{xyz}=2(x+y+z)\)

Do đó BĐT \((\star)\) được chứng minh.

Bài toán hoàn thành. Dấu bằng xảy ra khi \(a=b=c\)

NV
21 tháng 8 2021

Áp dụng  \(x^2+y^2+z^2\ge xy+yz+zx\) và \(x^2+y^2+z^2\ge\dfrac{1}{3}\left(x+y+z\right)^2\)

\(N\ge\dfrac{a^2b}{c}+\dfrac{b^2c}{a}+\dfrac{c^2a}{b}\ge\dfrac{1}{3}\left(a\sqrt{\dfrac{b}{c}}+b\sqrt{\dfrac{c}{a}}+c\sqrt{\dfrac{a}{b}}\right)^2=3\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

21 tháng 8 2021

thx, appreciate it

4 tháng 2 2021

Chỗ kia là có thêm dấu + nữa nha

21 tháng 1 2019

Đề APMO 1998

NV
3 tháng 3 2021

\(\sqrt{\dfrac{a}{b+c}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2a}{a+b+c}\)

Tương tự: \(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c}\) ; \(\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)

Cộng vế:

\(VT\ge\dfrac{2a+2b+2c}{a+b+c}=2\)

Dấu "=" ko xảy ra nên \(VT>2\)