Tìm x là số tự nhiên khác 0 biết: 1^3 + 2^3 + 3^3 + ... + 10^3 = (x + 1 ) ^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/3 + 1/6 + 1/10 + ... + 2/x(x+1) = 2005/2007
=> 2/6 + 2/12 + 2/20 + ... + 2/x(x+1) = 2005/2007
=> 2(1/2*3 + 1/3*4 + 1/4*5 + ... + 1/x*(x+1) = 2005/2007
=> 2(1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/x - 1/x+1) = 2005/2007
=> 2(1/2 - 1/x + 1) = 2005/2007
=> 1/2 - 1/x + 1 = 2005/4014
=> 1/x+1 = 1/2007
=> x + 1 = 2007
=> x = 2006
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=\frac{2005}{2007}\)
\(\rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2005}{2007}\)
\(\rightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2005}{2007}\)
\(\rightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2005}{2007}\)
\(\rightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2005}{2007}\)
\(\rightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2005}{2007}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2005}{2007}:2\)
\(\rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2005}{2007}:2\) \(\Rightarrow\frac{1}{x+1}=\frac{1}{2007}\)
\(\Rightarrow x+1=2007\rightarrow x=2006\)
Vậy x = 2006.
Ta có công thức:
\(1^3+2^3+.....+n^3=\left(1+2+3+....+n\right)^2\)
\(\Rightarrow1^3+2^3+3^3+.....+10^3=\left(1+2+3+....+10\right)^2=\left(x+1\right)^2\)
\(\Rightarrow x+1=55\Rightarrow x=54\)