(x-1)3= 102- (2.3.5 -52. 7 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=\frac{1}{101^2}+\frac{1}{102^2}+......\frac{1}{105^2};\frac{1}{2^2.3.5^2.7}\)
\(A>\frac{1}{\left(101.101\right)}+\frac{1}{\left(101.102\right)}+\frac{1}{\left(102.103\right)}+......\frac{1}{\left(104.105\right)}\)
Ta thấy mỗi mẫu đều < thì => sẽ lớn hơn
\(A>\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+\frac{1}{102}-\frac{1}{103}+........\)
\(A>\frac{1}{100}-\frac{1}{105}=\frac{1}{2100}=\frac{1}{\left(2^2.3.5^2.7\right)}=B\)
=> gọi vế \(\frac{1}{\left(2^2.2.5^2.7\right)}\) là B
=> A>B
\(\text{Ta có :}\)\(A=\frac{1}{101^2}+\frac{1}{102^2}+....+\frac{1}{105^2}< \)\(\frac{1}{100.101}+\frac{1}{101.102}+.....+\frac{1}{105.106}\)
\(A=\frac{1}{101^2}+\frac{1}{102^2}+....+\frac{1}{105^2}< \)\(\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+....+\frac{1}{105}-\frac{1}{106}\)\
\(A=\frac{1}{101^2}+\frac{1}{102^2}+....+\frac{1}{105^2}< \)\(\frac{1}{100}-\frac{1}{105}\)
\(A=\frac{1}{101^2}+\frac{1}{102^2}+....+\frac{1}{105^2}< \)\(\frac{1}{2100}\)
\(\text{Mà :}\)\(\frac{1}{2100}=\frac{1}{2^2.3.5^2.7}\)
\(\text{Nên:}\)\(A=\frac{1}{101^2}+\frac{1}{102^2}+....+\frac{1}{105^2}< \)\(\frac{1}{2^2.3.5^2.7}\)
\(A=5\left(1+5\right)+...+5^{11}\left(1+5\right)\)
\(=6\cdot\left(5+...+5^{11}\right)⋮30\)
c) \(\left|x\right|=3,5\Rightarrow\left[{}\begin{matrix}x=3,5\\x=-3,5\end{matrix}\right.\)
d) \(\left|x\right|=-2,7\Rightarrow x\in\varnothing\)
l) \(\left|x+\dfrac{3}{4}\right|-5=-2\Rightarrow\left|x+\dfrac{3}{4}\right|=3\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{3}{4}=3\\x+\dfrac{3}{4}=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3-\dfrac{3}{4}\\x=-3-\dfrac{3}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{9}{4}\\x=\dfrac{15}{4}\end{matrix}\right.\)
Đính chính câu l \(x=-\dfrac{15}{4}\) không phải \(x=\dfrac{15}{4}\)
\(\frac{1}{101^2}+\frac{1}{102^2}+\frac{1}{103^2}+\frac{1}{104^2}+\frac{1}{105^2}\)
\(< \frac{1}{100.101}+\frac{1}{101.102}+\frac{1}{102.103}+\frac{1}{103.104}+\frac{1}{104.105}\)
\(< \frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+\frac{1}{102}-\frac{1}{103}+\frac{1}{103}-\frac{1}{104}+\frac{1}{104}-\frac{1}{105}\)
\(< \frac{1}{100}-\frac{1}{105}=\frac{1}{2100}\)
\(< \frac{1}{2^2.3.5^2.7}\)
cậu xem lại đề đi mik tính hoài ko ra
Đề đúng mà