K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2017

bài này mà giải theo SOS là hơi bị tuyệt vời nhé =)))

8 tháng 8 2017

em moi co lop 7

1 tháng 1 2021

giả sử \(a\ge b\ge c\ge0\)

Ta có: \(a+\frac{b}{2}-\frac{a^2+ab+b^2}{a+b}=\frac{1}{2}\left(ab-b^2\right)\ge0\Rightarrow a+\frac{b}{2}\ge\frac{a^2+ab+b^2}{a+b}\)

\(b+\frac{a}{2}-\frac{a^2+ab+b^2}{a+b}=\frac{1}{2}\left(ab-a^2\right)\le0\Rightarrow b+\frac{a}{2}\le\frac{a^2+ab+b^2}{a+b}\)

Tương tự: \(b+\frac{c}{2}\ge\frac{b^2+bc+c^2}{b+c}\ge c+\frac{b}{2};a+\frac{c}{2}\ge\frac{a^2+ac+c^2}{a+c}\ge c+\frac{a}{2}\)

Lại có:+) \(\frac{a^3-b^3}{a+b}+\frac{b^3-c^3}{b+c}+\frac{c^3-a^3}{c+a}\)

\(=\left(a-b\right)\frac{a^2+ab+b^2}{a+b}+\left(b-c\right)\frac{b^2+bc+c^2}{b+c}-\left(a-c\right)\frac{a^2+ac+c^2}{a+c}\)

\(\ge\left(a-b\right)\left(b+\frac{a}{2}\right)+\left(b-c\right)\left(c+\frac{a}{2}\right)-\left(a-c\right)\left(a+\frac{c}{2}\right)\)

\(\ge\frac{-1}{4}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\left(1\right)\)

+) \(\frac{a^3-b^3}{a+b}+\frac{b^3-c^3}{b+c}+\frac{c^3-a^3}{c+a}\)

\(=\left(a-b\right)\frac{a^2+ab+b^2}{a+b}+\left(b-c\right)\frac{b^2+bc+c^2}{b+c}-\left(a-c\right)\frac{a^2+ac+c^2}{a+c}\)

\(\le\left(a-b\right)\left(a+\frac{b}{2}\right)+\left(b-c\right)\left(b+\frac{c}{2}\right)-\left(a-c\right)\left(c+\frac{a}{2}\right)\)

\(\le\frac{1}{4}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\left(2\right)\)

Từ 1,2 => đpcm

2 tháng 1 2021

BĐT đã cho tuong duong voi:

\(\left|\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right|\le\frac{1}{4}\left[\Sigma\left(a-b\right)^2\right]\)

Theo AM-GM ta có: \(\left(ab+bc+ca\right)\le\frac{9}{8}\cdot\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{a+b+c}\)

Có: \(VT\le\frac{9}{8}\left|\frac{\sqrt{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}}{\left(a+b+c\right)}\right|=\frac{9\sqrt{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}}{8\left(a+b+c\right)}\)

Cần chứng minh: \(4\left(a+b+c\right)^2\left[\Sigma\left(a-b\right)^2\right]^2\ge9\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2\)

Rõ ràng \(\Sigma\left(a-b\right)^2\ge3\sqrt[3]{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}\)

Cần cm: \(36\left(a+b+c\right)^2\sqrt[3]{\left(a-b\right)^4\left(b-c\right)^4\left(c-a\right)^4}\ge9\sqrt[3]{\left(a-b\right)^6\left(b-c\right)^6\left(c-a\right)^6}\)

Hay \(4\left(a+b+c\right)^2\ge\sqrt[3]{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}\)

Tiếp tục là điều hiển nhiên do \(VT\ge4\left[\left(a+b+c\right)^2-3\left(ab+bc+ca\right)\right]\)

\(=2\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\)

\(\ge6\sqrt[3]{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}\ge VP\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}\left(a-b\right)\left(b-c\right)\left(c-a\right)=0\\a-b=b-c=c-a\\a=b=c\end{cases}}\Leftrightarrow a=b=c.\)

19 tháng 5 2016

Bất đẳng thức tương đương với

\(\frac{a^2}{b+c}+a+\frac{b^2}{c+a}+b+\frac{c^2}{a+b}+c\ge\frac{\left(a+b+c\right)^2}{2\sqrt{3\left(ab+bc+ca\right)}}+a+b+c\)

\(\Leftrightarrow\frac{a\left(a+b+c\right)}{b+c}+\frac{b\left(a+b+c\right)}{c+a}+\frac{c\left(a+b+c\right)}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\sqrt{3\left(ab+bc+ca\right)}}+a+b+c\)

\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{a+b+c}{2\sqrt{3\left(ab+bc+ca\right)}}+1\left(1\right)\)

Áp dụng BĐT Bunhiacopxki ta có:

\(\left[\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right]\left[a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)\right]\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)

Ta chứng minh \(\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{a+b+c}{2\sqrt{3\left(ab+bc+ca\right)}}+1\left(2\right)\)

Đặt \(t=\frac{a+b+c}{\sqrt{3\left(ab+bc+ca\right)}}>0\),từ BĐT \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

Ta được \(t^2\ge0\Rightarrow t>1\).BĐT (2) viết lại thành 

\(\frac{3t^2}{2}\ge\frac{t}{2}+1\Leftrightarrow\left(t-1\right)\left(3t+2\right)\ge0\) luôn đúng

=>(2) được chứng minh

Từ (1) và (2) => điều phải chứng minh

Đẳng thức xảy ra khi và chỉ khi a=b=c

19 tháng 5 2016

áp dụng BĐT bunhiacopxki

28 tháng 8 2020

Áp dụng giả thiết và một đánh giá quen thuộc, ta được: \(16\left(a+b+c\right)\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ca}{abc}=\frac{\left(ab+bc+ca\right)^2}{abc\left(ab+bc+ca\right)}\ge\frac{3\left(a+b+c\right)}{ab+bc+ca}\)hay \(\frac{1}{6\left(ab+bc+ca\right)}\le\frac{8}{9}\)

Đến đây, ta cần chứng minh \(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\le\frac{1}{6\left(ab+bc+ca\right)}\)

 Áp dụng bất đẳng thức Cauchy cho ba số dương ta có \(a+b+\sqrt{2\left(a+c\right)}=a+b+\sqrt{\frac{a+c}{2}}+\sqrt{\frac{a+c}{2}}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(a+c\right)}{2}}\)hay \(\left(a+b+\sqrt{2\left(a+c\right)}\right)^3\ge\frac{27\left(a+b\right)\left(a+c\right)}{2}\Leftrightarrow\frac{1}{\left(a+b+2\sqrt{a+c}\right)^3}\le\frac{2}{27\left(a+b\right)\left(a+c\right)}\)

Hoàn toàn tương tự ta có \(\frac{1}{\left(b+c+2\sqrt{b+a}\right)^3}\le\frac{2}{27\left(b+c\right)\left(b+a\right)}\)\(\frac{1}{\left(c+a+2\sqrt{c+b}\right)^3}\le\frac{2}{27\left(c+a\right)\left(c+b\right)}\)

Cộng theo vế các bất đẳng thức trên ta được \(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\le\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{1}{6\left(ab+bc+ca\right)}\)\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(ab+bc+ca\right)\left(a+b+c\right)\)

Đây là một đánh giá đúng, thật vậy: đặt a + b + c = p; ab + bc + ca = q; abc = r thì bất đẳng thức trên trở thành \(pq-r\ge\frac{8}{9}pq\Leftrightarrow\frac{1}{9}pq\ge r\)*đúng vì \(a+b+c\ge3\sqrt[3]{abc}\)\(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\))

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{4}\)

10 tháng 8 2020

Đặt \(x=\frac{2a}{b+c};y=\frac{2b}{c+a};z=\frac{2c}{a+b}\)thì ta có \(xy+yz+zx+xyz=4\)

Bất đẳng thức cần chứng minh trở thành: \(x^2+y^2+z^2+5xyz\ge4\)

Đặt \(x+y+z=p;xy+yz+zx=q;xyz=r\)thì \(q+r=4\)và ta cần chứng minh \(p^2-2q+5r\ge8\)

\(\Leftrightarrow p^2-2q+5\left(r-4\right)+12\ge0\Leftrightarrow p^2-7q+12\ge0\)

*) Nếu \(4\ge p\)thì theo Schur, ta có: \(r\ge\frac{p\left(4q-p^2\right)}{9}\Leftrightarrow4\ge q+\frac{p\left(4q-p^2\right)}{9}\)

\(\Leftrightarrow q\le\frac{p^3+36}{4p+9}\)

Nên ta cần chỉ ra rằng \(p^2-\frac{7\left(p^3+6\right)}{4p+9}+12\ge0\Leftrightarrow\left(p-3\right)\left(p^2-6\right)\le0\)*đúng vì \(4\ge p\ge\sqrt{3q}\ge3\)*

*) Nếu \(p\ge4\)thì \(p^2\ge16\ge4q\Rightarrow p^2-2q+5r\ge p^2-2q\ge\frac{p^2}{2}\ge8\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi x = y = z = 1 hoặc \(\left(x,y,z\right)=\left(2,2,0\right)\)và các hoán vị

11 tháng 8 2020

Tuyệt quá,

Bất đẳng thức \(\frac{a^2}{\left(b+c\right)^2}+\frac{b^2}{\left(c+a\right)^2}+\frac{c^2}{\left(a+b\right)^2}+\frac{kabc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{3}{4}+\frac{1}{8}k\)

có hằng số k tốt nhất là 10.

Tức là bài toán này đúng với mọi \(k\le10\)!