K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2018

Do đó: Δ A I O = Δ B I O (cạnh huyền – góc nhọn)

Suy ra OA = OB ; IA = IB (hai cạnh tương ứng)

+ Xét tam giác IAM vuông tại A và tam giác IBN vuông tại B có:

IA = IB (cmt)

23 tháng 3 2018

a: Xét ΔOIA vuông tại A và ΔOIB vuông tại B có 

OI chung

\(\widehat{AOI}=\widehat{BOI}\)

Do đó: ΔOIA=ΔOIB

b: Xét ΔOAD vuông tại A và ΔOBC vuông tại B có

OA=OB

\(\widehat{BOC}\) chung

Do đó: ΔOAD=ΔOBC

Suy ra: OD=OC

Xét ΔOIC và ΔOID có

OC=OD

\(\widehat{COI}=\widehat{DOI}\)

OI chung

Do đó: ΔOIC=ΔOID

c: Ta có: ΔOCD cân tại O

mà OI là đường phân giác

nên OI là đường cao

a: Xét ΔOIA vuông tại A và ΔOIB vuông tại B có 

OI chung

\(\widehat{AOI}=\widehat{BOI}\)

Do đó: ΔOIA=ΔOIB

b: Xét ΔOBC vuông tại B và ΔOAD vuông tại A có

OB=OA

\(\widehat{BOC}\) chung

Do đó: ΔOBC=ΔOAD

Suy ra: OC=OD

Xét ΔOIC và ΔOID có

OI chung

\(\widehat{COI}=\widehat{DOI}\)

OC=OD

Do đó: ΔOIC=ΔOID

c: Ta có: ΔOCD cân tại O

mà OI là đường phân giác

nên OI là đường cao

Xét \(\Delta AOD\)và \(\Delta COB\)

\(OA=OC\left(gt\right)\)

\(AOD=COB\left(=90-DOC\right)\)

\(OD=OB\left(gt\right)\)

\(\Rightarrow\Delta AOD=\Delta COB\left(c.g.c\right)\Rightarrow ADO=CBO\left(1\right)\)

Gọi giao điểm của BF và OD là M

\(\)Ta có \(FMD=OMB\left(2\right)\)(đối đỉnh)

\(\left(1\right)\left(2\right)\Rightarrow ADO+FMD=OMB+CBO\Rightarrow FDM+FMD=MBO+OMB\)

\(\Rightarrow180-MFD=180-MOB=180-90\left(MOB=DOB=90\right)\Rightarrow MFD=90\)

Vậy \(BF\perp AD\)

3 tháng 1 2019

O x y z t A B C D F 1 2 3 E

Gọi E là giao điểm của Oy và AD

Ta có: \(\widehat{O_1}+\widehat{O_2}=\widehat{COB}\)(do tia OA nằm giữa hai tia OC và OB)

          ​\(\widehat{O_3}+\widehat{O_2}=\widehat{AOD}\)(do tia OB nằm giữa hai tia OA và OD)

    Mà \(\widehat{O_1}=\widehat{O_3}=90^o\)(do \(Oz\perp Ox,Ot\perp Oy\))

Do đó: ​\(\widehat{COB}=\widehat{AOD}\)

\(\Delta AOD\)và \(\Delta COB\)có: 

       \(\widehat{COB}=\widehat{AOD}\)(c.m.t)

       OA = OC (theo gt) 

       OB = OD (theo gt)

Do đó: \(\Delta AOD\)=\(\Delta COB\)(c.g.c)

\(\Delta FBE\) có: \(\widehat{EFB}+\widehat{FEB}+\widehat{FBE}=180^o\)(theo định lí tổng ba góc của một tam giác)​

\(\Delta OED\) có: \(\widehat{O_3}+\widehat{ODE}+\widehat{OED}=180^o\)(theo định lí tổng ba góc của một tam giác)​

     Mà \(\widehat{FBE}=\widehat{ODE}\) (do ​\(\Delta COB\)\(\Delta AOD\))

            \(\widehat{FEB}=\widehat{OED}\)(2 góc đối đỉnh)

Suy ra: \(\widehat{EFB}=\widehat{O_3}\)

        Mà \(\widehat{O_3}=90^o\)(do \(Oy\perp Ot\))

Do đó: \(\widehat{EFB}=90^o\)nên \(BF\perp FA\)

mik nha, mik mất công làm lắm đó! ^_^

19 tháng 12 2016

a) Xét 2 tam giác vuông OAC và tam giác OBD có:

OA = OB (gt)

O là góc chung

suy ra tam giác OAC = tam giác OBD (cạnh góc vuông - góc nhọn kề cạnh ấy)

b) Ta có : OD = OA + AD

OC = OB + BC

mà OD = OC (vì tam giác OAC = tam giác OBD)

OA = OB ( gt)

suy ra AD = BC

Xét 2 tam giác vuông ADI và tam giác BCI có:

AD = BC (cmt)

góc D = góc C (vì tam giác OAC = tam giác OBD)

suy ra tam giác ADI và tam giác BCI (cạnh goác vuông - góc nhọn kề cạnh ấy)

suy ra IA = IB (2 cạnh tương ứng)

c)Xét 2 tam giác vuông OAI và tam giác OBI có:

OI là cạnh chung

OA = OB (gt)

suy ra tam giác OAI = tam giác OBI (2 cạnh góc vuông)

suy ra góc O1 = góc O2 (2 góc tương ứng)

suy ra OI là tia phân giác của góc xOy

Cái chỗ A1, A2, B1, B2 bạn đừng kí hiệu vào bài làm nhé!

Mình nhầm tí!

19 tháng 12 2016

Ta có hình vẽ: O A D I C B 1 2 1 2 1 2

18 tháng 1 2020

P/s: sửa I là điểm chứ không phải là trung điểm

Hình tự vẽ :<

a) Xét \(\Delta\)AOI và \(\Delta\)BOI có:

IAO=IBO (=90o)

IO: chung

AOI=BOI (OI: p/g AOB)

\(\Rightarrow\Delta\)AOI=\(\Delta\)BOI (ch-gn)

\(\Rightarrow\)IA=IB (2 cạnh tương ứng)

b) Xét \(\Delta\)KOB và \(\Delta\)MOA có:

KBO=MAO (\(\Delta\)AOI=\(\Delta\)BOI)

OB=OA ( \(\Delta\)AOI=\(\Delta\)BOI)

O: chung

\(\Rightarrow\)\(\Delta\)KOB=\(\Delta\)MOA (g.c.g)

\(\Rightarrow\)OK=OM (2 cạnh tương ứng)

Ta có:

\(\hept{\begin{cases}OA+AK=OK\\OB+BM=OM\end{cases}}\)mà \(\hept{\begin{cases}OA=OB\\OK=OM\end{cases}}\)

\(\Rightarrow\)AK=BM 

c) Ta có: OM=OK (cmt)

\(\Rightarrow\)\(\Delta\)KOM cân tại O

\(\Rightarrow\)OMK=OKM 

Xét \(\Delta\)OCM và \(\Delta\)OCK có:

OMK=OKM (cmy)

OC: chung

COM=COK (OC: p/g MOK)

\(\Rightarrow\)\(\Delta\)OCM=\(\Delta\)OCK (g.c.g)

\(\Rightarrow\)OCM=OCK (2 góc tương ứng)

Mà OCM+OCK=180o (kề bù)

\(\Rightarrow\)OCM=OCK=180o:2=90o

\(\Rightarrow\)OC \(\perp\) MK