\(Cho\)\(\widehat{xOy}\)\(< 90^o\).Tia phân giác của \(\widehat{xOy}\)l là tia Ot. Lấy I\(\in\) Ot. Kẻ IA\(\perp\)Ox tại A và IB \(\perp\)Oy tại B..
a, AI cắt Oy tại E. BI cắt Ox tại K. Chứng minh OI\(\perp\) KE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do đó: Δ A I O = Δ B I O (cạnh huyền – góc nhọn)
Suy ra OA = OB ; IA = IB (hai cạnh tương ứng)
+ Xét tam giác IAM vuông tại A và tam giác IBN vuông tại B có:
IA = IB (cmt)
a: Xét ΔOIA vuông tại A và ΔOIB vuông tại B có
OI chung
\(\widehat{AOI}=\widehat{BOI}\)
Do đó: ΔOIA=ΔOIB
b: Xét ΔOAD vuông tại A và ΔOBC vuông tại B có
OA=OB
\(\widehat{BOC}\) chung
Do đó: ΔOAD=ΔOBC
Suy ra: OD=OC
Xét ΔOIC và ΔOID có
OC=OD
\(\widehat{COI}=\widehat{DOI}\)
OI chung
Do đó: ΔOIC=ΔOID
c: Ta có: ΔOCD cân tại O
mà OI là đường phân giác
nên OI là đường cao
a: Xét ΔOIA vuông tại A và ΔOIB vuông tại B có
OI chung
\(\widehat{AOI}=\widehat{BOI}\)
Do đó: ΔOIA=ΔOIB
b: Xét ΔOBC vuông tại B và ΔOAD vuông tại A có
OB=OA
\(\widehat{BOC}\) chung
Do đó: ΔOBC=ΔOAD
Suy ra: OC=OD
Xét ΔOIC và ΔOID có
OI chung
\(\widehat{COI}=\widehat{DOI}\)
OC=OD
Do đó: ΔOIC=ΔOID
c: Ta có: ΔOCD cân tại O
mà OI là đường phân giác
nên OI là đường cao
Xét \(\Delta AOD\)và \(\Delta COB\)
\(OA=OC\left(gt\right)\)
\(AOD=COB\left(=90-DOC\right)\)
\(OD=OB\left(gt\right)\)
\(\Rightarrow\Delta AOD=\Delta COB\left(c.g.c\right)\Rightarrow ADO=CBO\left(1\right)\)
Gọi giao điểm của BF và OD là M
\(\)Ta có \(FMD=OMB\left(2\right)\)(đối đỉnh)
\(\left(1\right)\left(2\right)\Rightarrow ADO+FMD=OMB+CBO\Rightarrow FDM+FMD=MBO+OMB\)
\(\Rightarrow180-MFD=180-MOB=180-90\left(MOB=DOB=90\right)\Rightarrow MFD=90\)
Vậy \(BF\perp AD\)
Gọi E là giao điểm của Oy và AD
Ta có: \(\widehat{O_1}+\widehat{O_2}=\widehat{COB}\)(do tia OA nằm giữa hai tia OC và OB)
\(\widehat{O_3}+\widehat{O_2}=\widehat{AOD}\)(do tia OB nằm giữa hai tia OA và OD)
Mà \(\widehat{O_1}=\widehat{O_3}=90^o\)(do \(Oz\perp Ox,Ot\perp Oy\))
Do đó: \(\widehat{COB}=\widehat{AOD}\)
\(\Delta AOD\)và \(\Delta COB\)có:
\(\widehat{COB}=\widehat{AOD}\)(c.m.t)
OA = OC (theo gt)
OB = OD (theo gt)
Do đó: \(\Delta AOD\)=\(\Delta COB\)(c.g.c)
\(\Delta FBE\) có: \(\widehat{EFB}+\widehat{FEB}+\widehat{FBE}=180^o\)(theo định lí tổng ba góc của một tam giác)
\(\Delta OED\) có: \(\widehat{O_3}+\widehat{ODE}+\widehat{OED}=180^o\)(theo định lí tổng ba góc của một tam giác)
Mà \(\widehat{FBE}=\widehat{ODE}\) (do \(\Delta COB\)= \(\Delta AOD\))
\(\widehat{FEB}=\widehat{OED}\)(2 góc đối đỉnh)
Suy ra: \(\widehat{EFB}=\widehat{O_3}\)
Mà \(\widehat{O_3}=90^o\)(do \(Oy\perp Ot\))
Do đó: \(\widehat{EFB}=90^o\)nên \(BF\perp FA\)
mik nha, mik mất công làm lắm đó! ^_^
a) Xét 2 tam giác vuông OAC và tam giác OBD có:
OA = OB (gt)
O là góc chung
suy ra tam giác OAC = tam giác OBD (cạnh góc vuông - góc nhọn kề cạnh ấy)
b) Ta có : OD = OA + AD
OC = OB + BC
mà OD = OC (vì tam giác OAC = tam giác OBD)
OA = OB ( gt)
suy ra AD = BC
Xét 2 tam giác vuông ADI và tam giác BCI có:
AD = BC (cmt)
góc D = góc C (vì tam giác OAC = tam giác OBD)
suy ra tam giác ADI và tam giác BCI (cạnh goác vuông - góc nhọn kề cạnh ấy)
suy ra IA = IB (2 cạnh tương ứng)
c)Xét 2 tam giác vuông OAI và tam giác OBI có:
OI là cạnh chung
OA = OB (gt)
suy ra tam giác OAI = tam giác OBI (2 cạnh góc vuông)
suy ra góc O1 = góc O2 (2 góc tương ứng)
suy ra OI là tia phân giác của góc xOy
Cái chỗ A1, A2, B1, B2 bạn đừng kí hiệu vào bài làm nhé!
Mình nhầm tí!
P/s: sửa I là điểm chứ không phải là trung điểm
Hình tự vẽ :<
a) Xét \(\Delta\)AOI và \(\Delta\)BOI có:
IAO=IBO (=90o)
IO: chung
AOI=BOI (OI: p/g AOB)
\(\Rightarrow\Delta\)AOI=\(\Delta\)BOI (ch-gn)
\(\Rightarrow\)IA=IB (2 cạnh tương ứng)
b) Xét \(\Delta\)KOB và \(\Delta\)MOA có:
KBO=MAO (\(\Delta\)AOI=\(\Delta\)BOI)
OB=OA ( \(\Delta\)AOI=\(\Delta\)BOI)
O: chung
\(\Rightarrow\)\(\Delta\)KOB=\(\Delta\)MOA (g.c.g)
\(\Rightarrow\)OK=OM (2 cạnh tương ứng)
Ta có:
\(\hept{\begin{cases}OA+AK=OK\\OB+BM=OM\end{cases}}\)mà \(\hept{\begin{cases}OA=OB\\OK=OM\end{cases}}\)
\(\Rightarrow\)AK=BM
c) Ta có: OM=OK (cmt)
\(\Rightarrow\)\(\Delta\)KOM cân tại O
\(\Rightarrow\)OMK=OKM
Xét \(\Delta\)OCM và \(\Delta\)OCK có:
OMK=OKM (cmy)
OC: chung
COM=COK (OC: p/g MOK)
\(\Rightarrow\)\(\Delta\)OCM=\(\Delta\)OCK (g.c.g)
\(\Rightarrow\)OCM=OCK (2 góc tương ứng)
Mà OCM+OCK=180o (kề bù)
\(\Rightarrow\)OCM=OCK=180o:2=90o
\(\Rightarrow\)OC \(\perp\) MK