K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2018

\(PT\Leftrightarrow x^2+y^2+z^2-xy-yz=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+xy+yz-y^2=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+y\left(x+z-y\right)=0\)

Do \(\left(x-y\right)^2\ge0;\left(y-z\right)^2\ge0\Rightarrow y\left(x+z-y\right)\ge0\)

Mà vế phải bằng 0 nên

\(\hept{\begin{cases}x-y=0\\y-z=0\\y\left(x+z-y\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y=z\\x^2=0\end{cases}}\Leftrightarrow x=y=z=0\)

29 tháng 12 2018

Giải thử thôi chứ mình mới học lớp 7 à!

18 tháng 12 2022

Ta có x + y + z = 0 

<=> (x + y + z)2 = 0

<=> \(x^2+y^2+z^2+2xy+2yz+2zx=0\)

\(\Leftrightarrow xy+yz+zx=-3\) (vì x2 + y2 + z2 = 6)

\(\Leftrightarrow x\left(y+z\right)+yz=-3\)

\(\Leftrightarrow-x^2+yz=-3\Leftrightarrow yz=x^2-3\) (vì x + y + z = 0)

Khi đó \(x^3+y^3+z^3=x^3+(y+z).(y^2+z^2-yz)\)

\(=x^3-x.[6-x^2-(x^2-3)]\)

\(=x^3-x.(9-2x^2)=3x^3-9x=6\)

Ta được \(\Leftrightarrow x^3-3x-2=0\Leftrightarrow(x^3+1)-3(x+1)=0\)

\(\Leftrightarrow(x+1)(x^2-x-2)=0\)

\(\Leftrightarrow\left(x+1\right)^2\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)

Với x = -1 ta có hệ \(\left\{{}\begin{matrix}y+z=1\\y^2+z^2=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1-z\\(1-z)^2+z^2=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1-z\\z^2-z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1-z\\\left[{}\begin{matrix}z=-1\\z=2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=2\\z=-1\end{matrix}\right.\\\left\{{}\begin{matrix}y=-1\\z=2\end{matrix}\right.\end{matrix}\right.\)

Với x = 2 ta có hệ : \(\left\{{}\begin{matrix}y+z=-2\\y^2+z^2=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2-z\\(-2-z)^2+z^2=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2-z\\z^2+2z+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-2-z\\z=-1\end{matrix}\right.\Leftrightarrow y=z=-1\)

Vậy (x;y;z) = (2;-1;-1) ; (-1 ; 2 ; -1) ; (-1 ; -1 ; 2)

18 tháng 12 2022

em cảm ơn ạ

6 tháng 4 2021

ĐKXĐ : \(2\le x,y,z\le4\)

Từ hệ phương trình ta suy ra được

\(\Sigma x+\Sigma\sqrt{x-2}+\Sigma\sqrt{4-x}=\Sigma x^2-5\Sigma x+33\\ \Leftrightarrow\Sigma\left(x^2-6x+9\right)+6=\Sigma\left(\sqrt{x-2}+\sqrt{4-x}\right)\\ \Leftrightarrow\Sigma\left(x-3\right)^2+6=\Sigma\left(\sqrt{x-2}+\sqrt{4-x}\right)\left(1\right)\)

Áp dụng bất đẳng thức \(\sqrt{A}+\sqrt{B}\le\sqrt{2\left(A+B\right)}\)

\(\Sigma\left(\sqrt{x-2}+\sqrt{4-x}\right)\le\Sigma\sqrt{2\left(x-2+4-x\right)}=\Sigma2=6\)

\(\Rightarrow\Sigma\left(x-3\right)^2+6\le6\Rightarrow\Sigma\left(x-3\right)^2\le0\)

Mà \(\Sigma\left(x-3\right)^2\ge0\)

\(\Rightarrow\left(x-3\right)^2=\left(y-3\right)^2=\left(z-3\right)^2=0\\ \Leftrightarrow x=y=z=3\)

Thay vào ta thấy thỏa mãn -> x=y=z=3 là nghiệm hpt

27 tháng 12 2015

Em học lớp 6 vào chtt nha tick cho em với

Giải hệ phương trình sau:

x+y+z+t=14

x+y-z-t=-4

x-y-z+t=0

Giải hệ phương trình trên máy tính ta có :

x = 2 

y = 3

z = 4

t = 5

Study well 

x-y+z-t=-2

12 tháng 11 2016

Xét hệ phương trình:

x2+x−y−1=0 (1)
y2+y−z−1=0 (2)
z2+z−t−1=0 (3)

t2+t−x−1=0 (4)

Không mất tính tổng quát, giả sử min { x, y , z, t } suy ra x <= y,

Từ (3), (4) suy ra x2 + x - 1 = y >= x suy ra x2 >= 1

Lấy (1) trừ (4) theo vế, ta được:

( x - t )( x + t +1 ) = y - x >=0

Nếu x khác t thì x + t + 1 <= 0, nếu x >= 1 suy ra t <= 0 suy ra t < x ( MT ), vậy x <= -1 .

Với x <= -1, từ (1) suy ra x2 + x -1 = y nên y <= -1 (*)

Mặt khác, từ (4) suy ra t2 - t <= 0 suy ra -1 <= t <= 0 (**)

Từ (*), (**), suy ra y <= t.

Lấy (1) trừ (3) ta được: ( x - z )( x + z + 1 ) = y - t suy ra x + z + 1 >= 0 suy ra z >= 0 (5). Vậy z >= t >= y >= x.

Ta có z >= t = z2 + z - 1 suy ra -1 <= z <= 0 (6). Từ (5), (6) suy ra z = 0 suy ra t = -1, thay vào (3) suy ra z = 1 hoặc z = -2 (mâu thuẫn với z = 0) . Do đó nếu x khác t thì hệ vô nghiệm

Nếu x = t thì từ (1) và (4) suy ra x = y, từ (1) và (2) suy ra y = z. Vậy x = y = z = t thay vào (1), ta được các nghiệm:

x = y = z = t = -1

x = y = z = t = 1