Cho hai số x,y thỏa mãn điều kiện 3x + y = 1. Tìm giá trị nhỏ nhất của biểu thức \(M=3x^2+y^2\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
Ta có: 3x + y = 1 => y = 1 - 3x
=> M = 3x2 + y2 = 3x2 + (1-3x)2
= 3x2 + 1 - 6x + 9x2
= 12x2 - 6x + 1
= 12.(x2 -\(\frac{1}{2}x\) + \(\frac{1}{12}\))
= 12.((x2 - 2. \(\frac{1}{4}x\)+ \(\frac{1}{16}\)) - \(\frac{1}{16}\)+ \(\frac{1}{12}\))
= 12.((x-\(\frac{1}{4}\))2 + \(\frac{1}{48}\))
= 12. (x-\(\frac{1}{4}\))2 + \(\frac{1}{4}\)
=> M \(\ge\)\(\frac{1}{4}\)
Dấu ''='' xảy ra khi: (x - \(\frac{1}{4}\))2 = 0 => x = \(\frac{1}{4}\)
Vậy Mmin= \(\frac{1}{4}\)khi x= \(\frac{1}{4}\)