tìm các số nguyên x thỏa mãn x^2+x-p với p là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(x^4+4y^4=x^4+4x^2y^2+y^4-4x^2y^2=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)
\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)
Do x, y nguyên dương nên số đã cho là SNT khi:
\(x^2-2xy+2y^2=1\Rightarrow\left(x-y\right)^2+y^2=1\)
\(y\in Z^+\Rightarrow y\ge1\Rightarrow\left(x-y\right)^2+y^2\ge1\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=1\)
Thay vào kiểm tra thấy thỏa mãn
2. \(N=n^4+4^n\)
- Với n chẵn hiển nhiên N là hợp số
- Với \(n\) lẻ: \(\Rightarrow n=2k+1\)
\(N=n^4+4^n=n^4+4^{2k+1}=n^4+4.4^{2k}+4n^2.4^k-n^2.4^{k+1}\)
\(=\left(n^2+2.4^k\right)^2-\left(n.2^{k+1}\right)^2=\left(n^2+2.4^k-n.2^{k+1}\right)\left(n^2+2.4^k+n.2^{k+1}\right)\)
Mặt khác:
\(n^2+2.4^k-n.2^{k+1}\ge2\sqrt{2n^2.4^k}-n.2^{k+1}=2\sqrt{2}n.2^k-n.2^{k+1}\)
\(=n.2^{k+1}\left(\sqrt{2}-1\right)\ge2\left(\sqrt{2}-1\right)>1\)
\(\Rightarrow N\) là tích của 2 số dương lớn hơn 1
\(\Rightarrow\) N là hợp số
Bài 4 chắc không có cách "đại số" nào (tức là dựa vào lý luận chia hết tổng quát) để giải. Mình nghĩ vậy (có lẽ có, nhưng mình ko biết).
Chắc chỉ sáng lọc và loại trừ theo quy tắc kiểu: do đổi vị trí bất kì đều là SNT nên không thể chứa các chữ số chẵn và chữ số 5, như vậy số đó chỉ có thể chứa các chữ số 1,3,7,9
Nó cũng không thể chỉ chứa các chữ số 3 và 9 (sẽ chia hết cho 3)
Từ đó sàng lọc được các số: 113 (và các số đổi vị trí), 337 (và các số đổi vị trí)
bài 5:
Chứng minh :p+q chia hết cho 4 .Từ đề bài suy ra p,q phải là 2 số lẻ liên tiếp nên p.q sẽ có dạng 4k+1 và 4k+3 suy ra p+q chia hết cho 4
Vi p,q là só nguyên tố >3 nêp,q chỉ có thể chia 3 dưa 1 hoặc 2 p=4k+1 suy ra q=3k+3 chia hết cho 3 loại p=3k+2 suy ra q=3k+1 nên p+q chia hết cho 3
suy ra p+q chia hêt cho 12
Quy tắc chia hết cơ bản: với các số nguyên dương ta luôn có \(a^n-b^n\) chia hết \(a-b\)
Do đó \(199^x-2^x⋮197\)
\(\Rightarrow p^y⋮197\Rightarrow p⋮197\) (do 197 là số nguyên tố)
\(\Rightarrow p=197\)
Pt trở thành: \(199^x-2^x=197^y\)
- Với \(x=1\Rightarrow y=1\)
- Với \(x=2\Rightarrow199^2-2^2=197.201\) chia hết 201, trong khi \(197^y\) ko chia hết cho 201 (ktm)
- Với \(x\ge3\) \(\Rightarrow2^x⋮8\)
TH1: Nếu x lẻ \(\Rightarrow\)\(199^x\equiv-1\left(mod8\right)\Rightarrow199^x-2^x\equiv-1\left(mod8\right)\)
+ \(y\) chẵn \(\Rightarrow197^y\equiv5^y\left(mod8\right)\equiv5^{2k}\left(mod8\right)\equiv25^k\left(mod8\right)\equiv1\left(mod8\right)\) (ktm)
+ \(y\) lẻ \(\Rightarrow197^y\equiv5^{2k+1}\left(mod8\right)\equiv5.25^k\left(mod8\right)\equiv5\) (mod8) (ktm)
TH2:\(x\) chẵn \(\Rightarrow199^x\equiv1\left(mod8\right)\Rightarrow199^x-2^x\equiv1\left(mod8\right)\)
+ \(y\) lẻ \(\Rightarrow\) tương tự TH1 ta có \(197^y\equiv5\left(mod8\right)\) (ktm)
\(\Rightarrow y\) chẵn
Khi x;y cùng chẵn, ta có \(199^x\equiv1\left(mod3\right)\) và \(2^x\equiv1\left(mod3\right)\)
\(\Rightarrow199^x-2^x⋮3\Rightarrow197^y⋮3\) (vô lý)
Vậy với \(x\ge3\) ko tồn tại bộ số nguyên dương nào thỏa mãn
Hay có đúng 1 bộ số thỏa mãn yêu cầu: \(\left(x;y;p\right)=\left(1;1;197\right)\)
\(x^3-x^2+x-1=x^2\left(x-1\right)+\left(x-1\right)=\left(x^2+1\right)\left(x-1\right)=p\)
Vì p nguyên tố nên có 2 trường hợp:\(\orbr{\begin{cases}x-1=1\\x^2+1=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}P=5\\P=-1\left(sai\right)\end{cases}}}\)
Vậy x=2 .BẤM ĐÚNG CHO TUI NHÉ
có \(x^3-x^2+x-1=p\)\(\Leftrightarrow x^2\left(x-1\right)+\left(x-1\right)=p\)\(\Leftrightarrow\left(x^2+1\right)\left(x-1\right)=p\)
mà x\(\in\)Z suy ra \(x^2+1\)và x-1 là ước của p mà \(x^2\)+1 -(x-1)=\(x^2-x+2\)= \(x^2-x+\frac{1}{4}\)+\(\frac{3}{4}\)=\(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)>0 suy ra \(x^2\)+1>x-1 và x-1 dương mặt khác p là snt nên p chỉ có 2 ước dương là 1 và chính nó suy ra x-1= 1 và\(x^2\)+1=p suy ra x=2 thỏa mãn đề bài khi đó p= \(2^2\)+1=5