Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cau 1 Có số vừa là bội của 3 vừa là ước của 54.
6
Câu 2:
Viết số 43 dưới dạng tổng hai số nguyên tố a,b với a<b . Khi đó b=
41
Câu 3:
Tập hợp các số tự nhiên x là bội của 13 và 26<=x<=104 có phần tử.
7
Câu 4:
Tập hợp các số có hai chữ số là bội của 32 là {32;64;96}
(Nhập các phần tử theo giá trị tăng dần, ngăn cách bởi dấu ";").
Câu 5:
Có tất cả bao nhiêu cặp số tự nhiên {x,y} thỏa mãn {2x+y}{y-3} ?
Trả lời: Có 2 cặp
Câu 6:
Tổng của tất cả các số nguyên tố có 1 chữ số là 17
Câu 7:
Tìm số nguyên tố p nhỏ nhất sao cho p+2 và p+4 cũng là số nguyên tố.
Trả lời: Số nguyên tố 1
Câu 8:
Tìm số nguyên tố p nhỏ nhất sao cho p+10 và p+14 cũng là số nguyên tố.
Trả lời:Số nguyên tố 3
Câu 9:
Có bao nhiêu số nguyên tố có dạng a1 ?
Trả lời: 5 số.
Câu 10:
Cho x,y là các số nguyên tố thỏa mãn x.x+45=y.y . Tổng x+y=9
Tập hợp các số tự nhiên x sao cho 6/ (x+1) là { } (Nhập các phần tử theo giá trị tăng dần, ngăn cách bởi dấu ";").
a, Do (a,b) = 6 => a = 6m; b = 6n với m,n ∈ N*; (m,n) = 1 và m ≤ n
Vì vậy ab = 6m.6n = 36mn, do ab = 216 => mn = 6. Do đó m = 1, n = 6 hoặc m = 2, n = 3
Với m = 1, n = 6 thì a = 6, b = 36
Với m = 2, n = 3 thì a = 12, b = 18
Vậy (a;b) là (6;36); (12;18)
b, Vì p là số nguyên tố nên ta xét các trường hợp của p
Trường hợp 1: p = 2, khi đó p+4 = 6; p+8 = 10 không là số nguyên tố (loại).
Trường hợp 2: p = 3, khi đó p+4 = 7; p+8 = 11 là hai số nguyên tố (thỏa mãn).
Trường hợp 3: p>3 nên p có dạng 3k+1; 3k+2 với k ∈ N*.
Nếu p = 3k+1 thì p+8 = 3k+1+8 = 3k+9 chia hết cho 3 và lớn hơn 3 nên p+8 không là số nguyên tố (loại).
Nếu p = 3k+2 thì p+4 = 3k+2+4 = 3k+6 chia hết cho 3 và lớn hơn 3 nên p+4 không là số nguyên tố (loại).
Kết luận. p = 3
Ek bạn , bạn có chơi nr ko
kb nha minh t i c k nha