Tìm max B biết B=15−4x−x2B=15-4x-x^2B=15−4x−x2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`A=x^2-4x+1`
`=x^2-4x+4-3`
`=(x-2)^2-3>=-3`
Dấu "=" xảy ra khi x=2
`B=4x^2+4x+11`
`=4x^2+4x+1+10`
`=(2x+1)^2+10>=10`
Dấu "=" xảy ra khi `x=-1/2`
`C=(x-1)(x+3)(x+2)(x+6)`
`=[(x-1)(x+6)][(x+3)(x+2)]`
`=(x^2+5x-6)(x^2+5x+6)`
`=(x^2+5x)^2-36>=-36`
Dấu "=" xảy ra khi `x=0\or\x=-5`
`D=5-8x-x^2`
`=21-16-8x-x^2`
`=21-(x^2+8x+16)`
`=21-(x+4)^2<=21`
Dấu "=" xảy ra khi `x=-4`
`E=4x-x^2+1`
`=5-4+4-x^2`
`=5-(x^2-4x+4)`
`=5-(x-2)^2<=5`
Dấu "=" xảy ra khi `x=5`
\(\left(4x-15\right)^{2016}=\left(4x-15\right)^{2015}\\ \Leftrightarrow\left[{}\begin{matrix}4x-15=0\\4x-15=1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}4x=15\\4x=16\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{15}{4}\\x=4\end{matrix}\right.\)
Vậy \(x\in\left\{\dfrac{15}{4};4\right\}\)
a, 5x - 16 = 41 + x
=> 5x - x = 41 + 16
=> 4x = 57
=> x = \(\frac{57}{4}\)
Vậy x = \(\frac{57}{4}\)
b) 4x - 1 =15 - x
=> 4x + x = 15 + 1
=> 5x = 16
=> \(x=\frac{16}{5}\)
Vậy \(x=\frac{16}{5}\)
c, x - 15 = 6 + 4x
=> -15 - 6 = 4x - x
=> 3x = - 21
=> x = -7
Vậy x = - 7
Có j sai mong bỏ qua
a) => (4x-15).(4x-15)2015=(4x-15)2015
=> 4x-15=1
=> x=4
b) => 4.2x+6-480= 0
=> 4.2x-474=0
=> 4.2x=474
=> 2x= 118,5
ko có gt x thoả mãn đề bài
chả biết câu b trình bày đúng hay sai, hay là đầu bài chép nhầm nữa. Nếu sai ai đó chữa lại hộ cái nhé
_HẾT_
b, 2x+2x+1+2x+2+2x+3-480=0
2^x.1+2^x.2+2^x.2^2+2^x.2^3=480
2^x.(1+2+2^2+2^3)=480
2^x.15=480
2^x=32
2^x=2^5
x=5
\(A=15-8x-x^2=-\left(x+4\right)^2+31\)
Vì \(\left(x+4\right)^2\ge0\forall x\)\(\Rightarrow-\left(x+4\right)^2+31\le31\)
Dấu "=" xảy ra \(\Leftrightarrow-\left(x+4\right)^2=0\Leftrightarrow x=-4\)
Vậy maxA = 31 <=> x = - 4
\(B=4x-x^2+2=-\left(x-2\right)^2+6\)
Vì \(\left(x-2\right)^2\ge0\forall x\)\(\Rightarrow-\left(x-2\right)^2+6\le6\)
Dấu "=" xảy ra \(\Leftrightarrow-\left(x-2\right)^2=0\Leftrightarrow x=2\)
Vậy maxB = 6 <=> x = 2
a) \(A=15-8x-x^2=-\left(x^2+8x+16\right)-1\)
\(=-\left(x+4\right)^2-1\le-1\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(-\left(x+4\right)=0\Rightarrow x=-4\)
b) \(B=4x-x^2+2=-\left(x^2-4x+4\right)+6\)
\(=-\left(x-2\right)^2+6\le6\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(-\left(x-2\right)^2=0\Rightarrow x=2\)
c) Trang nghĩ nên sửa đề nhé:
\(C=-x^2-y^2+4x+4y+2\)
\(C=-\left(x^2-4x+4\right)-\left(y^2-4y+4\right)+10\)
\(C=-\left(x-2\right)^2-\left(y-2\right)^2+10\le10\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}-\left(x-2\right)^2=0\\-\left(y-2\right)^2=0\end{cases}}\Rightarrow x=y=2\)
A = - 3\(x\).(\(x-5\)) + 3(\(x^2\) - 4\(x\)) - 3\(x\) - 10
A = - 3\(x^2\) + 15\(x\) + 3\(x^2\) - 12\(x\) - 3\(x\) - 10
A = (- 3\(x^2\) + 3\(x^2\)) + (15\(x\) - 12\(x\) - 3\(x\)) - 10
A = 0 + (3\(x-3x\)) - 10
A = 0 - 10
A = - 10
a) Ta có: \(A=4x^2+4x+2\)
\(=4x^2+4x+1+1\)
\(=\left(2x+1\right)^2+1>0\forall x\)
b) Ta có: \(B=2x^2-2x+1\)
\(=2\left(x^2-x+\dfrac{1}{2}\right)\)
\(=2\left(x^2-x+\dfrac{1}{4}+\dfrac{1}{4}\right)\)
\(=2\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{2}>0\forall x\)
c) Ta có: \(C=-x^2+6x-15\)
\(=-\left(x^2-6x+15\right)\)
\(=-\left(x-3\right)^2-6< 0\forall x\)
Tìm max B biết B=15−4x−x2B=15-4x-x^2B=15−4x−x2
DELL THỂ hiểu đc đề ghi đề như shi* vậy :(