Tại sao số chính phương có 4 chữ số không thể chỉ có 1 chữ số 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
Câu 1:
Số ban đầu \(222...2\) (Gồm mười lăm chữ số 2)
Tổng các chữ số
\(15\times2=30\)
Khi cộng thêm các chữ số 0 vào thì tổng sẽ là 30
=> Chia hết cho 3 nhưng lại không chia hết cho 9
Vậy không còn cách nào để thêm
Câu 2:
Số đó là \(1223334444\)
Tổng các chữ số
\(1+2\times2+3\times3+4\times4=30\)
=> 1223334444 chia hết cho 3
=> Để 1223334444 là số chính phương thì 122333444 chia hết cho 9
Mà 30 thì không chia hết cho 9
Vậy 122333444 không phải là số chính phương.
1 số tự nhiên chia \(⋮\)k thì phải \(⋮\)k2
Gọi số tự nhiên gồm 15 chữ số 2 là a(a \(\in\)N)
Khi thêm các c/s 0 tùy ý vào vị trí thì tổng các c/s của a ko thay đổi và vẫn là 15 . 2=30
1 số có tổng các c/s \(⋮\)3 thì \(⋮\)3
=> Số a hay số mới phải \(⋮\)3
Giả sử có cách viết thêm các c/s 0 vào vị trí tùy ý để số mới tạo thành 1 số chính phương
=> Số mới là 1 số chính phương
=> Số mới \(⋮\)3 => số mới phải \(⋮\)9
Mà 30 ko chia hết cho 9 => số mới ko chia hết cho 9 (vô lý)
=> giả sử sai
Vậy ko có cách nào để viết thêm c/s 0 vào vị trí tùy ý để tạo thành là 1 số chính phương
10 \(\le\)n \(\le\)99 => 21 < 2n + 1 < 199 và 31 < 3n + 1 < 298
Vì 2n + 1 là số lẻ mà 2n + 1 là số chính phương
=> 2n + 1 thuộc { 25 ; 49 ; 81 ; 121 ; 169 } tương ứng số n thuộc { 12; 24; 40; 60; 84 } ( 1 )
Vì 3n + 1 là số chính phương và 31 < 3n + 1 < 298
=> 3n + 1 thuộc { 49 ; 64 ; 100 ; 121 ; 169 ; 196 ; 256 ; 289 } tương ứng n thuộc { 16 ; 21 ; 33 ; 40 ; 56 ; 65 ; 85 ; 96 } ( 2 )
Từ 1 và 2 => n = 40 thì 2n + 1 và 3n + 1 đều là số chính phương
gọi a là chữ số khác 5 của A , ta có tổng các chữ số của A là :
1996 . 5 + a = 9980 + a
suy ra số dư trong phép chia của A cho 9 là : 8 + a = ( mod 9 ) ( * )
Nếu A là số chính phương thì A bằng K2 , mà số dư trong phép chia của K cho 9 là : 0 ; 1 ; 2 ; 3 ; 4 nên số dư trong phép chia của A cho 9 là : 0 , 1 , 4 , 7
Như vậy , từ ( * ) ta có các giá trị mà a có thể nhân là : 1 , 2 , 5 ( loại )
a , A có chữ số tận cùng là an: Do A chính phương nên a không thể bằng 2 và bằng 8 mà bằng 1 , như vậy :
A = ( 10m + 5 )2 = 1002 + 20m + 1
suy ra chữ số hàng chục của A là số chẵn , khác 5 , nên trường hợp này không thể xảy ra
b , A có chữ số tận cùng khác a , tức là 5 : suy ra :
A = ( 10m + 5 )2 = 100m( m + 1 ) + 25
Từ đó , ta có a = 2 và chữ số hàng trăm của A là số chẵn ( vì m( m + 1 ) chẵn ) , tức là khác 5 , mâu thuẫn với giả thiết .
Vậy , không thể xảy ra trường hợp A là số chính phương .
REFER
Ta có tổng chữ số của a bằng 2018 => a chia 3 dư 2
Mà số chính phương chia 3 chỉ dư 0 hoặc 1 => a không phải là số chính phương
ko tận cùng là 2;3;7;8
ko tận cùng là 1 vì 11 chia 4 dư 3
ko tận cùng là 5 vì chia 55 chia 4 dư 3
ko tận cùng là 6 vì 66 chia 4 dư 2
ko tận cùng là 9 vì 99 chia 4 dư 3
vậy số có dạng là a000,a444
với số có dạng là a000 thì a chỉ có thể là 1;3;4;6;7;9
với số có dạng là a444 thì a chỉ có thể là 1;3;4;6;7;9
thử đi, có 6TH thôi=))
2. a và b đồng dư 0;1 mod 4
nên a-b đồng dư 0;1;3 mod 4
mà 2014 đồng dư 2 mod 4
nên ko tồn tại a;b
Em xem lại nhé: 1024 cũng là 1 số chính phương.
mk thiếu
Tại sao số chính phương có 4 chữ số không thể chỉ có 1 chữ số 0 ở cuối