Cho HCN:ABCD,E là điểm bất kì nằm trên điểm chéo AC. Đường thẳng E//AD cắt AB,DC lần lượt tại F và G. Đường thẳng E//AD lần lượt ở H,K. Chứng minh hai hình chữ nhật efbk và egdh có cùng S
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo giả thiết ta có FG//AD, HK//AB nên HE//AF và AH//EF.
Xét tứ giác AFEH có:
⇒ AFEH là hình bình hành.
Ta có: SEHDG = SADC – SAHE – SEGC.
SEFBK = SABC – SAFE – SEKC.
Để chứng minh SEHDG = SEFBK,
ta đi chứng minh SADC = SABC; SAHE = SAFE ; SEGC = SEKC.
+ Chứng minh SADC = SABC.
SADC = AD.DC/2;
SABC = AB.BC/2.
ABCD là hình chữ nhật ⇒ AB = CD, AD = BC
⇒ SADC = SABC.
+ Chứng minh SAHE = SAFE (1)
Ta có: EH // AF và EF // AH
⇒ AHEF là hình bình hành
Mà Â = 90º
⇒ AHEF là hình chữ nhật
⇒ SAHE = SAFE (2)
+ Chứng minh SEGC = SEKC
EK // GC, EG // KC
⇒ EGCK là hình bình hành
Mà D̂ = 90º
⇒ EGCK là hình chữ nhật
⇒ SEGC = SEKC (3).
Từ (1); (2); (3) suy ra đpcm.
ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
Xét ΔOAK và ΔOCH có
\(\widehat{OAK}=\widehat{OCH}\)(hai góc so le trong, AK//CH)
OA=OC
\(\widehat{AOK}=\widehat{COH}\)(hai góc đối đỉnh)
Do đó: ΔOAK=ΔOCH
=>OK=OH
=>O là trung điểm của KH
Xét ΔOAE và ΔOCF có
\(\widehat{EAO}=\widehat{FCO}\)(hai góc so le trong, AE//CF)
OA=OC
\(\widehat{AOE}=\widehat{COF}\)
Do đó: ΔOAE=ΔOCF
=>OE=OF
=>O là trung điểm của EF
Xét tứ giác EKFH có
O là trung điểm chung của EF và KH
=>EKFH là hình bình hành
Xem hình 125 ta thấy:
SABC = SADC
SAFE = SAHE
SEKC = SEGC
Suy ra: SABC – SAFE – SEKC = SADC – SAHE - SEGC
hay SEFBK = SEGDH
Ta có DAOK = DCOH Þ OK =OH, DDOE = DBOF Þ OE = OF Þ EHFK là hình bình hành
AF // HE ( HK // AB )
AH // EF ( FC // AD )
\(\Rightarrow\)AHEF là hình bình hành
có : góc HAF = 90 độ ( ABCD là hình chữ nhật )
\(\Rightarrow\)AHEF là hình chữ nhật
EF // CG ( HK // AB // CD )
EG // CK ( FG // AD // BC )
\(\Rightarrow\)EGCK là hình bình hành
có góc GCK = 90 độ ( ABCD là hình chữ nhật )
\(\Rightarrow\)EGCK là hình chữ nhật
Ta có : diện tích ABC = 1/2 AB . BC = 1/2diện tích ABCD
diện tích ACD = 1/2 AD . DC = 1/2 diện tích ABCD
\(\Rightarrow\)Diện tích ABC = diện tích ACD
Tương tự : diện tích AEF = diện tích EHA
diện tích ECK = diện tích CFG
diện tích EFBK = diện tích ABC - diện tích AEF - diện tích ECK
diện tích EGDH = diện tích ACD - diện tích EHA - diện CEG
\(\Rightarrow\) diện tích EFBK = diện tích EGDH ( đpcm )
Chứng minh: SEFBK = SEGDH
Vì: AC là đường chéo của ABCD
=> SABC = SCDA
Mà: SABC = SAEF + SEFBK + SEKC
SCDA = SAEH + SEGDH + SEGC
Và: SAEH = SAEF (AE là đường chéo)
SEGC = SEKC (EC là đường chéo)
=> SEFBK = SEGDH