K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2019

Bài tập tổng hợp chương 2 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Theo giả thiết ta có FG//AD, HK//AB nên HE//AF và AH//EF.

Xét tứ giác AFEH có:

Bài tập tổng hợp chương 2 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án⇒ AFEH là hình bình hành.

NV
10 tháng 3 2023

Đề sai rồi, em kiểm tra lại, EK, HF và BD ko hề đồng quy

10 tháng 3 2023

Cho hình bình hành ABCD, lấy điểm M trên BD sao cho MB < MD. Đường thẳng qua M và song song với AB cắt AD và BC lần lượt tại E và F. Đường thẳng qua M song song với AD cắt AB và AC lần lượt tại K và H.

1. Chứng minh: các đường thẳng EK, HF, BD đồng quy

2. Cho SMKF = 9 cm2 ; SMEH = 25 cm2 . Tính SABCD.

 
8 tháng 12 2016

AE = CF (gt)

mà AE // CF (ABCD là hình chữ nhật)

=> AECF là hình bình hành

=> FA // CE

=> AFD = ECF (2 góc đồng vị)

mà ECF = CEB (2 góc so le trong, AB // CD)

=> AFD = CEB (1)

AB = CD (ABCD là hình chữ nhật)

mà AE = CF (gt)

=> AB - AE = CD - CF

=> EB = DF (2)

Xét tam giác NEB và tam giác MFD có:

NEB = MFD (theo 1)

EB = FD (theo 2)

EBN = FDM (2 góc so le trong, AB // CD)

=> Tam giác NEB = Tam giác MFD (g.c.g)

=> BN = DM (2 cạnh tương ứng)

O là trung điểm của BD (3)

=> O là trung điểm của AC (ACBD là hình chữ nhật) (4)

=> O là trung điểm của EF (AECF là hình bình hành) (5)

AEI = ABD (2 góc so le trong, EI // BD)

CFK = CDB (2 góc so le trong, FK // BD)

mà ABD = CBD (2 góc so le trong, AB // CD)

=> AEI = CFK (6)

EI // BD (gt)

FK // DB (gt)

=> EI // FK (7)

Xét tam giác EAI và tam giác FCK có:

IEA = KFC (theo 6)

EA = FC (gt)

EAI = FCK (= 900)

=> Tam giác EAI = Tam giác FCK (g.c.g)

=> EI = FK (2 cạnh tương ứng)

mà EI // FK (theo 7)

=> EIFK là hình bình hành

mà O là trung điểm của EF (theo 5)

=> O là trung điểm của IK (8)

Từ (3), (4), (5) và (8)

=> AC, EF, IK đồng quy tại O là trung điểm của BD

O là trung điểm của AC và BD

=> OA = OC = \(\frac{AC}{2}\)

OB = OD = \(\frac{BD}{2}\)

mà AC = BD (ABCD là hình chữ nhật)

=> OA = OD = OB = OC

=> Tam giác OAD cân tại O

mà AOD = 600

=> Tam giác OAD đều

=> AD = OA = OD

mà AD = 1 cm

AD = BC (ABCD là hình chữ nhật)

=> OA = OD = OC = OB = BC = 1 cm

=> AC = 2OA = 2 . 1 = 2 cm

Xét tam giác BAC vuông tại B có:

\(AC^2=BA^2+BC^2\) (định lý Pytago)

\(AB^2=AC^2-BC^2\)

\(=2^2-1^2\)

\(=4-1\)

= 3

\(AB=\sqrt{3}\)

\(S_{ABCD}=AB\times BC=\sqrt{3}\times1=\sqrt{3}\left(cm^2\right)\)

8 tháng 12 2016

@@ my god oaoa

17 tháng 12 2021

Answer:

a) Gọi I và J là giao điểm các đường chéo của hình chữ nhật MDNF và hình chữ nhật ABCD

Tam giác IND và tam giác JCD là các tam giác cân \(\Rightarrow\widehat{N_1}=\widehat{D_1}\)  và \(\widehat{C_1}=\widehat{D_2}\)

Mặt khác \(\widehat{N_1}=\widehat{D_2}\) (Hai góc đồng vị)

Vậy \(\widehat{C_1}=\widehat{D_1}\Rightarrow DF//AC\)

b) Tứ giác EIDJ là hình bình hành vì có các cạnh đối song song

Có: EJ = ID nhưng IF = ID \(\Rightarrow IF=EJ\)

Từ đó tứ giác EFIJ là hình bình hành \(\Rightarrow FE=IJ\left(1\right)\)

Mặt khác trong tam giác FBD: có FB // IJ (2)

Từ (1) và (2) => điểm E, điểm B, điểm F thẳng hàng

Mà EF = IJ và EB = IJ

=> E là trung điểm BF

C B J D F N E I M A 1 1 2 1

28 tháng 9 2019

Gọi H là trung điểm DC. 

Chứng minh HE// IF( vì cùng //BC)

=> HE vuông FK ( vì FK vuông IF)

Tương tự HF// EI( vì cùng //AD)

=> HF vuông  EK( vì EK vuông IE)

Xét tam giác EFH có EK và FK là 2 đường cao nên K là trực tâm. Suy ra HK vuông FE mà FE //DC nên HK vuông DC tại H suy ra tam giác KDC cân tại K. Nên KD=KC

30 tháng 5 2018

a)  F H A ^ = H A K ^ = A K F ^ = 90 0

Þ AHFK là hình chữ nhật.

b) Gọi là giao điểm của AC và BD. Chứng minh OE là đường trung bình của DACF

Þ AF//OE

Þ AF/BD

c) Gọi I là giao điểm của AF và HK.

Chứng minh

H 1 ^ = A ^ 1 ( H 1 ^ = A 2 ^ = B 1 ^ = A 1 ^ ) ⇒ K H / / A C  mà KH đi qua trung điểm I của AF Þ KH đi qua trung điểm của FC.

Mà E là trung điểm của FC Þ K, H, E thẳng hàng