Cho C=1+3^2+3^3+...+3^11,chứng minh rằng C là bội của 40
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NHóm để đặt nhân tử có 13 và 40 nhen :3
\(C=1+3+3^2+.......+3^{11}\)
\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+......+3^9\left(1+3+3^2\right)\)
\(=\left(1+3+3^2\right)\left(1+3^3+.....+3^9\right)\)
\(=13.\left(1+3^3+.....+3^9\right)\)
\(\Rightarrow C⋮13\)
C =( 1 + 3 + 3^2) +( 3^3 + 3^4 + 3^5) + ...... + (3^9 + 3^10 + 3^11 )
C = 13.1 + 3^3 .13 + ...... + 3^9 .13
C = 13. (1 + 3^3 + 3^6 + 3^9)
Chia hết cho 13
C = (1 + 3 + 3^2 + 3^3) + ...... + (3^8 + 3^9 + 3^10 + 3^11)
C = 40.1 + 40.3^4 + 40.3^8
C = 40. (1 + 3^4 + 3^8 )
Chia hết cho 40
Vậy......
C = (1 + 3 + 3^2 + 3^3) + ......... + (3^8 + 3^9 + 3^10 + 3^11)
C = 1.40 + .............. + 3^8.40
= 40.(1 + 3^4 + ...... + 3^8)
Chia hết cho 40
Ta có : 3C = 3 + 3^2 + 3^3 + ...3^12
=> 3C - C = (3 + 3^2 + 3^3 + ...3^12) - (1+3+3^2+3^3+....+3^11) = 3^12 - 1 = 531440
hay 2C = 531440 => C = 53144 :2 = 265720
265720 = 20440.13 => C chia hết cho 13 ( vì có thừa số 13)
265720 = 6643.40 => C chia hết cho 40 ( vì có thừa số 40)
\(C=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+......+\left(3^9+3^{10}+3^{11}\right)\)
\(C=13.1+3^3.13+......+3^9.13\)
\(C=13.\left(1+3^3+3^6+3^9\right)\)
Chia hết cho 13
\(C=\left(1+3+3^2+3^3\right)+......+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(C=40.1+40.3^4+40.3^8\)
\(C=40.\left(1+3^4+3^8\right)\)
Chia hết cho 40
Cho A = 1-3+3 mũ 2-3 mũ 3+3 mũ 4-3 mũ 5+.....+3 mũ 98-3 mũ 99 chứng to A chia hết cho 20