Chứng minh : \(4^n+15n-10⋮9\) với \(n\in N\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chứng minh theo pp quy nạp
chứng minh đúng với n=1
giả sử đúng với n=k
cần chứng minh đúng với n=k+1
Thử n = 1 \(\Rightarrow4+15-10=9⋮9\).Vậy mệnh đề đúng với n = 1
Giả sử n = K đúng với mọi n thuộc N
\(\Rightarrow4^K+15K-10⋮9\)
Giờ ta cần chứng minh mệnh đề cũng đúng với n = K + 1
Thật vậy ta có :\(\Rightarrow4^{K+1}+15\left(K+1\right)-10\)
\(=4^K.4+15K+5\)
\(=4^K.4+4.15K-4.10+45\)
\(=4\left(4^K+15K-10\right)+5.9\)
Do \(4^K+15K-10⋮9\left(B2\right)\)
\(45⋮9\)
\(\Rightarrow\)Mệnh đề cũng đúng với n = K + 1
Vậy đpcm.
PP quy nạp toán học lớp 11
Gọi cái cần chứng minh là (*)
+) Với n = 1 thì (*) = 4 + 15 - 1 = 18 chia hết cho 9
+) Giả sử (*) đúng với n = k => 4k + 15k - 1 chia hết cho 9 thì ta cần chứng minh (*) luôn đúng với k + 1 tức 4k + 1 + 15(k + 1) - 1 chia hết cho 9
Thật vậy:
4k + 1 + 15(k + 1) - 1
= 4.4k + 15k + 15 - 1
= 4.4k + 15k + 18 - 4 - 45k
= 4.(4k + 15k - 1) - 45k - 18
Vì 4.(4k + 15k - 1) chia hết cho 9; 45k chia hết cho 9 và 18 cũng chia hết cho 9
=> 4.(4k + 15k - 1) - 45k - 18 chia hết cho 9
hay 4k + 1 + 15(k + 1) - 1 chia hết cho 9
=> Phương pháp quy nạp được chứng minh
Vậy 4n + 15n - 1 chia hết cho 9 với mọi n thuộc N*
4n + 15n – 1 chia hết cho 9
Đặt An = 4n + 15n – 1
với n = 1 ⇒ A1 = 4 + 15 – 1 = 18 chia hết 9
+ giả sử đúng với n = k ≥ 1 nghĩa là:
Ak = (4k + 15k – 1) chia hết 9 (giả thiết quy nạp)
Ta cần chứng minh: Ak + 1 chia hết 9
Thật vậy, ta có:
Ak + 1 = 4k+1 + 15(k + 1) – 1
= 4.4k + 15k + 15 – 1
= 4.(4k + 15k – 1) – 45k+ 4+ 15 – 1
= 4.(4k +15k- 1) – 45k + 18
= 4. Ak + (- 45k + 18)
Ta có: Ak⋮ 9 và ( - 45k+ 18) = 9(- 5k + 2)⋮ 9
Nên Ak + 1 ⋮ 9
Vậy 4n + 15n – 1 chia hết cho 9 ∀n ∈ N*
Với \(n=1\) thì:
\(4^n+15n-10=4+15-10=9⋮9\)
Giả sử mệnh đề đúng với \(n=k\),nghĩa là \(4^k+15k-10⋮9\),ta sẽ chứng minh mệnh đề cũng đúng với \(n=k+1\)
Thật vậy: Với \(n=k+1\) thì
\(4^n+15n-10=4^{k+1}+15\left(k+1\right)-10\)
\(=4^{k+1}+15k+15-10=4^{k+1}+15k+5\)
\(=4.\left(4^k+15k-10\right)-45k+45\)
\(=4\left(4^{4k}+15k-10\right)-9\left(5k+5\right)⋮9\)
Vậy mệnh đề đúng với mọi \(n\in N\)
dòng cuối là 5k-5 nhé