Tính :
S = 1 - 2 + 2² - 2³ + 2 mũ 4 - 2 mũ 5 +....+ 2 mũ 98 + 2 mũ 99.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
M=21+22+23+24+....+220⇔2.M=2.(21+22+23+24+....+220)⇔2M=2.21+2.22+2.23+2.24+....+2.220⇔2M=22+23+24+25+......+221⇒2M−M=(22+23+24+25+......+221)−(21+22+23+24+....+220)⇔M=221−21⇔M=2.220−2⇔M=2.(24)5−2⇔M=2.165−2M=21+22+23+24+....+220⇔2.M=2.(21+22+23+24+....+220)⇔2M=2.21+2.22+2.23+2.24+....+2.220⇔2M=22+23+24+25+......+221⇒2M−M=(22+23+24+25+......+221)−(21+22+23+24+....+220)⇔M=221−21⇔M=2.220−2⇔M=2.(24)5−2⇔M=2.165−2
6x6x luôn có chữ số tận cùng là 6 nên 165165 có chữ số tận cùng là 6.
Do đó, 2.1652.165 có chữ số tận cùng là 2
Suy ra 2.165−22.165−2 có chữ số tận cùng là 0
Hay 2.165−22.165−2 chia hết cho 10.
Vậy M chia hết cho 10.
dựa vô đó nha
nếu bn cần gấp thì dựa dô đó chứ mình còn ôn bài nên ko thể giải giúp bn. Thông cảm nha
A=1-2+3-4+...+99-100 SSH=(100-1):1+1=100 Sh
=>A=(1-2)+(3-4)+....+(99-100)
vì chia thành cặp suy ra 100:2 =50 cặp
A=(-1)+(-1)+...(-1)
A=(-1).50
A=-50
a Ta có
B= 1-2-3+4-5-6-7+8......+ 97 -98-99+100
= ( 1-2-3+4)+ (5-6-7+8)+ .....+ ( 97-98-99+100)
= 0 +0+... +0 (25 cs 0)
=0 x25=0
1) Từ 1 đến 100 có tất cả 100 số số hạng
=> 1+2+3+....+99+100=\(\frac{\left(100+1\right)\cdot100}{2}=5050\)
=> A=5050
2) Từ 1 đến 99 có tất cả: (99-1) : 2 +1=50 số hạng
=> 1+3+5+7+....+97+99=\(\frac{\left(99+1\right)\cdot50}{2}=2500\)
=> B=250
3) làm tương tự
4) S=\(1+2+2^2+2^3+...+2^9\)
\(2S=2+2^2+2^3+2^4+....+2^{10}\)
\(2S-S=2^{10}-1\)
\(\Rightarrow S=2^{10}-1\)
5) làm tương tự
A=1+2+3+...+99+100
Số số hạng của dãyA là:
(100-1):1+1=100(số hạng)
Tổng của dãy A là :
(100+1).100:2=5050
B=1+3+5+...+97+99
Số số hạng của dãy B là:
(99-1):2+1=50 (số hạng)
Tổng của dãy B là:
(99+1).50:2=250
C=2+4+6+...+98+100
Số số hạng của dãy C là:
(100-2):2+1=50(số hạng)
Tổng của dãy C là:
(100+2).50:2=2550
S=1+2+22+23+...+29
2S= 2+22+23+...+29+210
2S-S=1-210
S=1-210
M=1+3+32+33+...+39
3M=3+32+33+...+39+310
3M-M=1-310
2M=1-310
M=(1-310):2
\(A=2+2^2+2^3+...+2^{100}\)
\(A=2+\left(2^2+2^3+2^4\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\)
\(A=2+2^2\left(1+2+2^2\right)+...+2^{98}\left(1+2+2^2\right)\)
\(A=2+2^2\cdot7+...+2^{98}\cdot7\)
\(A=2+7\cdot\left(2^2+...+2^{98}\right)\)
Dễ thấy \(7\cdot\left(2^2+...+2^{98}\right)⋮7\)
\(\Rightarrow\) A chia 7 dư 2
A=2+(22+23+24)+...+(298+299+2100)A=2+(22+23+24)+...+(298+299+2100)
A=2+22(1+2+22)+...+298(1+2+22)A=2+22(1+2+22)+...+298(1+2+22)
A=2+22⋅7+...+298⋅7A=2+22⋅7+...+298⋅7
A=2+7⋅(22+...+298)A=2+7⋅(22+...+298)
Ta thấy 7⋅(22+...+298)⋮77⋅(22+...+298)⋮7
⇒⇒ A chia 7 dư 2