Áp dụng bất đẳng thức cô-si tìm max
a) A=-x^2+2x+7
b) B=(x-y)(5-2x+2y)+14
Giúp mình nha!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cái cậu Nguyễn Minh Tuấn kia đã không lm bài rồi lại còn yêu cầu người khác k nữa
\(x+\sqrt{2-x}\ge2\sqrt{x\sqrt{2-x}}\)
Bìa này không thể dùng cauchy bạn ạ
A = \(\frac{x^2}{3}+\frac{x^2}{3}+\frac{x^2}{3}+\frac{1}{x^3}+\frac{1}{x^3}\ge5\sqrt[5]{\frac{1}{27}}\)
dấu bằng xảy ra khi x = \(\sqrt[5]{3}\)
Cả 2 biểu thức này đều ko tồn tại GTNN
GTNN chỉ tồn tại khi có thêm điều kiện, với \(\dfrac{x^2}{x+3}\) thì điều kiện là \(x>-3\), còn \(\dfrac{x^2}{x-2}\) thì điều kiện là \(x>2\)
Bài làm:
Ta có: \(A=x+\frac{1}{x^2}=\left(\frac{1}{x^2}+\frac{x}{8}+\frac{x}{8}\right)+\frac{3}{4}x\ge3\sqrt[3]{\frac{1}{x^2}.\frac{x}{8}.\frac{x}{8}}+\frac{3}{4}.2\)
\(=3.\frac{1}{4}+\frac{3}{2}=\frac{3}{4}+\frac{3}{2}=\frac{9}{4}\)
Dấu "=" xảy ra khi: \(\frac{1}{x^2}=\frac{x}{8}\Leftrightarrow x^3=8\Leftrightarrow x=2\)
Vậy \(Min\left(A\right)=\frac{9}{4}\)khi \(x=2\)
Học tốt!!!!
\(2y^2-y^2+x+y+1=x^2+xy+y^2\)
\(\Rightarrow x+y-x^2-xy=-1\)
\(\Rightarrow x-x^2+y-xy=-1\)
\(\Rightarrow x\left(1-x\right)+y\left(1-x\right)=-1\)
\(\Rightarrow\left(1-x\right)\left(x+y\right)=-1\)
TH1:
\(\Rightarrow\hept{\begin{cases}1-x=1\\x+y=1\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\x+y=1\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\0+y=1\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}\)
TH2:
\(\Rightarrow\hept{\begin{cases}1-x=-1\\x+y=-1\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\x+y=-1\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\-2+y=-1\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}\)
vậy ....
í chết cha rồi nhầm tí .
sửa lại chỗ TH1 và TH2:
TH1:
\(\Rightarrow\hept{\begin{cases}1-x=1\\x+y=-1\end{cases}}\)
TH2:
\(\Rightarrow\hept{\begin{cases}1-x=-1\\x+y=1\end{cases}}\)
đến đây bạn tự làm nốt nha
Bài làm:
a) \(\left(x^4-2x^2y+y^2\right)\div\left(y-x^2\right)\)
\(=\left(x^2-y\right)^2\div\left(y-x^2\right)\)
\(=\left(y-x^2\right)^2\div\left(y-x^2\right)\)
\(=y-x^2\)
b) \(\left(x^2-2xy^2+y^4\right)\div\left(x-y^2\right)\)
\(=\left(x-y^2\right)^2\div\left(x-y^2\right)\)
\(=x-y^2\)
a: =-(x^2-2x-7)
=-(x^2-2x+1-8)
=-(x-1)^2+8<=8
Dấu = xảy ra khi x=1
b: \(B=\left(x-y\right)\left[-2\left(x-y\right)+5\right]+14\)
\(=-2\left(x-y\right)^2+5\left(x-y\right)+14\)
\(=-2\left[\left(x-y\right)^2-\dfrac{5}{2}\left(x-y\right)-7\right]\)
\(=-2\left[\left(x-y\right)^2-2\cdot\left(x-y\right)\cdot\dfrac{5}{4}+\dfrac{25}{16}-\dfrac{137}{16}\right]\)
\(=-2\left(x-y-\dfrac{5}{4}\right)^2+\dfrac{137}{8}< =\dfrac{137}{8}\)
Dấu = xảy ra khi x=y+5/4