K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2018

x=24( đang nghĩ cách làm )

19 tháng 12 2018

\(1+2+3+...+x=300\)

\(\Rightarrow\frac{x.\left(x+1\right)}{2}=300\)

\(\Rightarrow x.\left(x+1\right)=600\)

\(\Rightarrow x.\left(x+1\right)=24.25\)

\(\Rightarrow x=24\)

PP/ss: Hoq chắc ạ_333

13 tháng 12 2019

Câu c) mình sai rồi nên hãy giúp mình câu a và b thôi 

26 tháng 5 2021

Xét \(\Delta=\text{​​}\)\(\left(-4m\right)^2-4\left(3m^2-3\right)\)\(=4m^2+12>0\forall m\)

=> Pt luôn có hai nghiệm pb

Theo viet \(\left\{{}\begin{matrix}x_1+x_2=4m\\x_1x_2=3m^2-3\end{matrix}\right.\)

\(P=\dfrac{2019}{\left|x_1-x_2\right|}\)\(\Leftrightarrow P^2=\dfrac{2019^2}{\left(x_1-x_2\right)^2}\)\(=\dfrac{2019^2}{\left(x_1+x_2\right)^2-4x_1x_2}\)\(=\dfrac{2019^2}{16m^2-4\left(3m^2-3\right)}\)

\(=\dfrac{2019^2}{4m^2+12}\le\dfrac{2019^2}{12}\)

\(\Rightarrow P\le\dfrac{2019}{\sqrt{12}}\)

\(\Rightarrow P_{max}=\dfrac{2019\sqrt{12}}{12}\Leftrightarrow m=0\)

Vậy m=0

Hình như để như này : 

\(\frac{x+1}{2014}+\frac{x+2}{2013}+\frac{x+3}{2012}+3=0\)

\(\left(\frac{x+1}{2014}+1\right)+\left(\frac{x+2}{2013}+1\right)+\left(\frac{x+3}{2012}+1\right)=0\)

\(\Leftrightarrow\frac{x+2015}{2014}+\frac{x+2015}{2013}+\frac{x+2015}{2012}=0\)

\(\Leftrightarrow\left(x+2015\right)\left(\frac{1}{2014}+\frac{1}{2013}+\frac{1}{2012}\right)=0\)

Do \(\frac{1}{2014}+\frac{1}{2013}+\frac{1}{2012}>0\Rightarrow x+2015=0\)

\(\Leftrightarrow x=-2015\)

Vậy \(x=-2015\)

3 tháng 2 2021

cảm ơn bạn

14 tháng 4 2018

Vì phương trình có 2 nghiệm x1;x2 
=> Theo vi-ét ta có 

x+ x= 2(m+1) và x1x= 2m+3 

theo bài ra ta có 

(x1 - x2)2 = 4

<=> x12 - 2x1x+ x22  = 4

<=> x12 + 2x1x+ x22 - 4x1x2 = 4

<=> (x1 + x2)2  - 4x1x2  = 4

<=> 4(m+1)2 - 4(2m+3) = 4

<=> (m+1)2 - (2m+3) = 1

<=> m2 + 2m +1 -2m -3 -1 = 0

<=> m2 - 3 = 0

<=> m2 = 3

<=> m\(=\pm\sqrt{3}\)

Vậy với m\(=\pm\sqrt{3}\) thì phương trình có hai nghiệm x1;x2 thỏa mãn (x1 - x2)2 = 4

28 tháng 5 2021

Để pt có 2 nghiệm thì \(\Delta'=m^2-4\ge0\Leftrightarrow\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\).

Khi đó theo hệ thức Viète ta có \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=4\end{matrix}\right.\).

Ta có \(\left(x_1+1\right)^2+\left(x_2+1\right)^2=2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)=0\)

\(\Leftrightarrow\left(2m\right)^2-2.4+2.2m=0\Leftrightarrow m^2+m-2=0\Leftrightarrow\left(m-1\right)\left(m+2\right)=0\Leftrightarrow\left[{}\begin{matrix}m=1\left(l\right)\\m=-2\left(TM\right)\end{matrix}\right.\).

Vậy m = -2.

28 tháng 5 2021

Mn ơi giúp mình với ạ❤

NV
7 tháng 5 2021

\(Q=\dfrac{x^2+xy+y^2+300}{x+y}=\dfrac{\dfrac{1}{2}\left(x+y\right)^2+\dfrac{1}{2}\left(x^2+y^2\right)+300}{x+y}\)

\(Q\ge\dfrac{\dfrac{1}{2}\left(x+y\right)^2+\dfrac{1}{4}\left(x+y\right)^2+300}{x+y}=\dfrac{\dfrac{3}{4}\left(x+y\right)^2+300}{x+y}\)

\(Q\ge\dfrac{2\sqrt{\dfrac{3}{4}\left(x+y\right)^2.300}}{x+y}=30\)

\(Q_{min}=30\) khi \(x=y=10\)

7 tháng 5 2021

cho em hỏi là 
chỗ này \(\dfrac{1}{2}\left(x+y^{ }\right)^{2 }+\dfrac{1}{2}\left(x^2+y^2\right)+300\)
tại sao lại ra như vậy ạ