Giả sử N=1.3.5.7...2007. Chứng minh rằng trong 3 ssos nguyên liên tiếp 2N-1, 2N và 2N+1 không có số nào là số chính phương.
giúp với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: N = 1.3.5.7.....2013
=> 2N = 2.1.3.5.7.....2013
Vì 2N chia hết cho 2 mà không chia hết cho 4
=> 2N không là số chính phương
Vì 2N chia hết cho 3
=> 2N - 1 chia cho 3 dư 2
=> 2N - 1 không là số chính phương
Vì 2N chia hết cho 2 mà không chia hết cho 4
=> 2N chia cho 4 dư 2
=> 2N + 1 chia cho 4 dư 3
=> 2N + 1 không là số chính phương
Vậy trong 3 số tự nhiên liên tiếp 2N - 1, 2N, 2N + 1 không có số nào là số chính phương.
dễ mà chứng minh nó chia hết cho 2 nhưng không chia hét cho4
Ta có: 2N = 2.1.3.5.7.....2013
=> 2N chia hết cho 3
=> 2N - 1 chia cho 3 dư 2
=> 2N - 1 không là SCP
Ta có: N = 1.3.5.7.....2013
=> 2N = 2.1.3.5.7.....2013
Vì 2N chia hết cho 2 mà không chia hết cho 4 => 2N không là SCP
Biết làm mỗi vậy thôi, chờ tí nữa nghĩ tiếp.