K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2018

Ta có: \(2^m-2^n=2^8\)

\(2^n\left(2^{m-n}-1\right)=2^8\)

\(2^{m-n}-1=1\)

\(2^1-1=1\)

\(m-n=1\)

\(2^8\left(2^{9-8}-1\right)=2^8\)

\(\Rightarrow\)\(m=9\)

          \(n=8\)

Ta có: \(2^m-2^n=256\)

\(\Leftrightarrow2^n\left(2^{m-n}-1\right)=256\)(1)

Ta có: \(2^m-2^n=256\)

\(\Leftrightarrow2^m>2^n\)

\(\Leftrightarrow m>n\)

(1) suy ra \(2^{m-n}-1\) là số lẻ

\(\Leftrightarrow2^{m-n}-1=1\)

\(\Leftrightarrow m-n=1\)

\(\Leftrightarrow2^n=256\)

hay n=8

hay m=1+n=1+8=9

Vậy: (m,n)=(9;8)

4 tháng 8 2021

Bạn Nguyễn Lê Phước Thịnh ơi? Nhưng mik vẫn ko hiểu tại sao \(2^{m-n}-1\)là số lẻ và m>n lại suy ra được \(2^{m-n}-1=1\)?

4 tháng 10 2015

^m-2^n=2^8 
Chia cả 2 vế cho 2 mũ 8. 
2^(m-8)- 2^(n-8)=1 
+giả sử m<=8, ta có VT<=1-2^(n-8)<1 
Suy ra m>8. Suy ra 2^(m-8) thuộc tập số tự nhiên và chia hết cho 2 
+giả sử n<8, ta có 2^(n-8) kô thuộc tập số tự nhiên. Suy ra VT kô thuộc tập số tự nhiên.Suy ra VT<>1 
do đó n>=8 
Với n>8,m>8 suy ra VT chia hết cho 2. suy ra VT<=>1 
Với n=8, VT=2^(m-8)-1=1. tương đương với m=9. 
Vậy m=9, n=8

25 tháng 7 2016

2m - 2n = 256

=> 2n.(2m-n - 1) = 256

Vì 2m-n - 1 chia 2 dư 1; 256 = 28 => 2n = 28 và 2m-n - 1 = 1

=> n = 8; 2m-n = 21

=> m - n = 1 => m = 1 + 8 = 9

Vậy m = 9; n = 8

25 tháng 7 2016

2m - 2n = 256

=> 2n.(2m-n - 1) = 256

Vì 2m-n - 1 chia 2 dư 1; 256 = 28 => 2n = 28 và 2m-n - 1 = 1

=> n = 8; 2m-n = 21

=> m - n = 1 => m = 1 + 8 = 9

Vậy m = 9; n = 8

18 tháng 12 2018

vì m và n đều là số nguyên dương mà \(2^m-2^n=512\Rightarrow m>n\)

Đặt m=n+k( k>0,k thuộc Z+)

\(2^{n+k}-2^n=2^9\Rightarrow2^n.\left(2^k-1\right)=2^9\)

vì 2k-1 là số lẻ mà Ước của 29 chỉ có 1 là số lẻ => 2k-1=1=> 2k=2=> k=1

=> 2n=29 => n=9. m=1+9=10

Vậy n=9,m=10

18 tháng 12 2018

    \(2^m-2^n=512\)

\(\implies 2^m-2^n=2^9>0\)

\(\implies 2^m-2^n>0\)

\(\implies m>n\)

\(\implies 2^n(2^{m-n}-1)=2^9.1\)

Thấy \(2^{m-n}-1 \neq0\implies 2^{m-n}\neq1\implies m-n\neq0\)

\(\implies 2^{m-n}\vdots2\)

\(\implies 2^{m-n}-1\) chia 2 dư 1

\(\implies\)\(\hept{\begin{cases}2^n=2^9\\2^{m-n}-1=1\end{cases}\Rightarrow\hept{\begin{cases}n=9\\m-n=1\end{cases}\Rightarrow}\hept{\begin{cases}n=9\\m=10\end{cases}}}\)

Vậy n=9;m=10(tmđk)

_Học tốt_

28 tháng 5 2017

\(\Leftrightarrow\left(2^{m-2}\right)^n=2^8\Leftrightarrow2^{\left(m-2\right)n}=2^8\Leftrightarrow n\left(m-2\right)=8\)

vì m,n nguyên dương nên \(m-2\ge0\Rightarrow m\ge2\)do đó m-2 và n là ước của 8 nên có thể là (8,1);(4,2);(2,4)

  1. \(\hept{\begin{cases}m-2=8\\n=1\end{cases}}\Leftrightarrow\hept{\begin{cases}m=10\\n=1\end{cases}}\)
  2. \(\hept{\begin{cases}m-2=4\\n=2\end{cases}}\Leftrightarrow\hept{\begin{cases}m=6\\n=2\end{cases}}\)
  3. \(\hept{\begin{cases}m-2=2\\n=4\end{cases}}\Leftrightarrow\hept{\begin{cases}m=4\\n=4\end{cases}}\)
  4. việc còn lại là kết luận nghiệm
28 tháng 5 2017

à mình nghĩ cái đề nó như vậy chứ 2m-2n=256

=>2n(2m-n-1)=256

2m-2n=256>0=>2m>2n=>m>n=>m-n>0= mà m;n nguyên dương nên m-n\(\ge\)1

=>2m-n-1 là số lẻ

Mặt khác 2n(2m-n-1)=28.1 => 2n=28 và 2m-n-1=1 => n=8 và m=9

11 tháng 8 2015

 Ta có 2m - 2n > 0 => 2m > 2n => m > n
Nên (1) ( 2n(2m-n – 1) = 28
Vì m-n > 0 => 2m-n– 1 lẽ => 2m-n-1 =1 => 2m-n= 21
=> m - n =1 => m = n +1 => n = 8, m = 9

12 tháng 8 2015

2m-2n > 0 => 2m>2n => m>n

2m-2n=256

2n(2m-n-1) = 28

* Nếu m-n =1 thì

2n(2m-n-1)=28

2n(2-1)     =28

2n = 28

=> n=8

m-n = 1

m-8 = 1

m = 8+1

m=9

* Nếu m-n lớn hơn hoặc bằng 2 thì :

2m-n-1 là số lẻ lớn hơn 1 nên vế trái là thừa số nguyên tố lẻ mà vế phải (28) là thừa số nguyên tố lẻ nên mâu thuẫn

Vậy m=9 ; n=8

 

 

\(2^m-2^n=512\)

\(\Rightarrow2^m-2^n=2^9\)

\(\Rightarrow m=10;n=9\)

12 tháng 9 2019

\(2^m-2^n=512\Leftrightarrow2^m-2^n=2^9\Leftrightarrow2^m>2^n\Leftrightarrow m>n\)

\(TH1:m-n=1\)

\(\Rightarrow2^m-2^n=2^n\left(2^{m-n}+1\right)=2^9\Leftrightarrow2^n.\left(2-1\right)=2^9\)

\(\Leftrightarrow2^n=2^9\Leftrightarrow n=9\)\(\Rightarrow m=10\)

\(TH2:m-n>2\),\(2^n\left(2^{m-n}+1\right)=2^9\)

Vế trái có thừa số \(2^{m-n}+1\)lẻ (Vì m - n >2 nên \(2^{m-n}\)chẵn\(\Leftrightarrow2^{m-n}+1\)lẻ)

Vậy m = 10; n = 9