Cho 2 số x,y t/m x+y=1 Tìm GTNN của M=\(5x^2+y^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x+y=1
=>x=1-y
M=5x^2+y^2
=5(1-y)^2+y^2
\(=5y^2-10y+5+y^2\)
\(=6y^2-10y+5\)
\(=6\left(y^2-\dfrac{5}{3}y+\dfrac{5}{6}\right)\)
\(=6\left(y^2-2\cdot y\cdot\dfrac{5}{6}+\dfrac{25}{36}+\dfrac{5}{36}\right)\)
\(=6\left(y-\dfrac{5}{6}\right)^2+\dfrac{5}{6}>=\dfrac{5}{6}\)
Dấu = xảy ra khi y=5/6
=>\(M_{min}=\dfrac{5}{6}\) khi y=5/6 và x=1/6
Ta có
x+y=1 => x=1-y
thay vào phương trình
\(\Rightarrow M=5.\left(1-y\right)^2+y^2\)
\(\Rightarrow M=5.\left(1-2y+y^2\right)+y^2\)
\(\Rightarrow M=5-10y+5y^2+y^2\)
\(\Rightarrow M=6y^2-10y+5\)
\(\Rightarrow M=6\left(y^2-\frac{5}{3}y+\frac{5}{6}\right)\)
\(\Rightarrow M=6\left(y^2-2.\frac{5}{6}y+\frac{25}{36}-\frac{25}{36}+\frac{5}{6}\right)\)
\(\Rightarrow M=6\left[\left(y-\frac{5}{6}\right)^2+\frac{5}{36}\right]\)
\(\Rightarrow M=6\left(y-\frac{5}{6}\right)^2+\frac{5}{6}\ge\frac{5}{6}\)
Vậy \(M_{min}=\frac{5}{6}\Leftrightarrow\hept{\begin{cases}x+y=1\\y-\frac{5}{6}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1-y\\y=\frac{5}{6}\end{cases}}}\Leftrightarrow\hept{\begin{cases}x=1-\frac{5}{6}=\frac{1}{6}\\y=\frac{5}{6}\end{cases}}\)
T I C K chọn mình nha bạn cảm ơn chúc bạn học tốt
\(\)
Điều kiện có 2 nghiệm phân biệt tự làm nha
Theo vi-et ta có:
\(\hept{\begin{cases}x_1+x_2=5\\x_1.x_2=m-2\end{cases}}\)
\(2\left(\frac{1}{\sqrt{x_1}}+\frac{1}{\sqrt{x_2}}\right)=3\)
\(\Leftrightarrow4\left(\frac{1}{x_1}+\frac{1}{x_2}+\frac{2}{\sqrt{x_1.x_2}}\right)=9\)
\(\Leftrightarrow4\left(\frac{5}{m-2}+\frac{2}{\sqrt{m-2}}\right)=9\)
Làm nốt nhé
Câu 1:
M=\(\left(x^2+2xy+y^2\right)+\left(2x+2y\right)+1+\left(4x^2-4x+1\right)+2014\)
=\(\left(\left(x+y\right)^2+2\left(x+y\right)+1\right)+\left(2x-1\right)^2+2014\)
=\(\left(x+y+1\right)^2+\left(2x-1\right)^2+2014\ge2014\)
\(\Rightarrow M\ge2014\Leftrightarrow minM=2014\)
\(\Leftrightarrow\hept{\begin{cases}x+y+1=0\\2x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0,5\\y=1,5\end{cases}}\)
câu 1
x^2 -5x +y^2+xy -4y +2014
=(y^2+xy +1/4x^2) -4(y+1/2x)+4 +3/4x^2-3x+2010
=(y+1/2x-2)^2 +3/4(x^2-4x+4)+2007
=(y+1/2x-2)^2 +3/4(x-2)^2 +2007
GTNN là 2007<=> x=2 và y=1
Áp dụng BĐT Cauchy-Schwarz dạng Engel:
\(P=\frac{x^2}{\frac{1}{5}}+\frac{y^2}{1}\ge\frac{\left(x+y\right)^2}{\frac{1}{5}+1}=\frac{5}{6}\)
Dấu "=" xảy ra khi \(\frac{x}{\frac{1}{5}}=\frac{y}{1}\Leftrightarrow5x=y\Rightarrow x=\frac{1}{6}\Rightarrow y=\frac{5}{6}\)
Vậy ...
\(x+y=1\Rightarrow y=1-x\)
\(P=5x^2+\left(1-x\right)^2=6x^2-2x+1=6\left(x-\frac{1}{6}\right)^2+\frac{5}{6}\ge\frac{5}{6}\)
\(P_{min}=\frac{5}{6}\) khi \(\left\{{}\begin{matrix}x=\frac{1}{6}\\y=\frac{5}{6}\end{matrix}\right.\)
Câu 2:
\(A-4=2x+3y\Rightarrow\left(A-4\right)^2=\left(2x+3y\right)^2\)
\(\left(A-4\right)^2\le\left(2^2+3^2\right)\left(x^2+y^2\right)=676\)
\(\Rightarrow-26\le A-4\le26\)
\(\Rightarrow-22\le A\le30\)
\(A_{max}=30\) khi \(\left\{{}\begin{matrix}x=4\\y=6\end{matrix}\right.\)
\(A_{min}=-22\) khi \(\left\{{}\begin{matrix}x=-4\\y=-6\end{matrix}\right.\)
\(2x+3y=1\Rightarrow y=\frac{1-2x}{3}\)
Do \(x;y\ge0\Rightarrow0\le x\le\frac{1}{2}\)
\(A=x^2+3\left(\frac{1-2x}{3}\right)^2=x^2+\frac{1}{3}\left(4x^2-4x+1\right)=\frac{7}{3}x^2-\frac{4}{3}x+\frac{1}{3}\)
\(A=\frac{7}{3}\left(x-\frac{2}{7}\right)^2+\frac{1}{7}\ge\frac{1}{7}\)
\(\Rightarrow A_{min}=\frac{1}{7}\) khi \(x=\frac{2}{7};y=\frac{1}{7}\)
Mặt khác \(A=\frac{1}{3}x\left(7x-4\right)+\frac{1}{3}\)
Do \(x\le\frac{1}{2}\Rightarrow7x-4< 0\Rightarrow x\left(7x-4\right)\le0\)
\(\Rightarrow A\le\frac{1}{3}\Rightarrow A_{max}=\frac{1}{3}\) khi \(x=0;y=\frac{1}{3}\)